TY - JOUR AU - Ekeberg, Tomas AU - Assalauova, Dameli AU - Bielecki, Johan AU - Boll, Rebecca AU - Daurer, Benedikt J. AU - Eichacker, Lutz A. AU - Franken, Linda E. AU - Galli, Davide E. AU - Gelisio, Luca AU - Gumprecht, Lars AU - Gunn, Laura H. AU - Hajdu, Janos AU - Hartmann, Robert AU - Hasse, Dirk AU - Ignatenko, Alexandr AU - Koliyadu, Jayanath AU - Kulyk, Olena AU - Kurta, Ruslan AU - Kuster, Markus AU - Lugmayr, Wolfgang AU - Lübke, Jannik AU - Mancuso, Adrian P. AU - Mazza, Tommaso AU - Nettelblad, Carl AU - Ovcharenko, Yevheniy AU - Rivas, Daniel E. AU - Rose, Max AU - Samanta, Amit K. AU - Schmidt, Philipp AU - Sobolev, Egor AU - Timneanu, Nicusor AU - Usenko, Sergey AU - Westphal, Daniel AU - Wollweber, Tamme AU - Worbs, Lena AU - Xavier, Paul Lourdu AU - Yousef, Hazem AU - Ayyer, Kartik AU - Chapman, Henry N. AU - Sellberg, Jonas A. AU - Seuring, Carolin AU - Vartanyants, Ivan A. AU - Küpper, Jochen AU - Meyer, Michael AU - Maia, Filipe R. N. C. TI - Observation of a single protein by ultrafast X-ray diffraction JO - Light VL - 13 IS - 1 SN - 2047-7538 CY - London PB - Nature Publishing Group M1 - PUBDB-2024-00530 SP - 15 PY - 2024 AB - The idea of using ultrashort X-ray pulses to obtain images of single proteins frozen in time has fascinated and inspired many. It was one of the arguments for building X-ray free-electron lasers. According to theory, the extremely intense pulses provide sufficient signal to dispense with using crystals as an amplifier, and the ultrashort pulse duration permits capturing the diffraction data before the sample inevitably explodes. This was first demonstrated on biological samples a decade ago on the giant mimivirus. Since then, a large collaboration has been pushing the limit of the smallest sample that can be imaged. The ability to capture snapshots on the timescale of atomic vibrations, while keeping the sample at room temperature, may allow probing the entire conformational phase space of macromolecules. Here we show the first observation of an X-ray diffraction pattern from a single protein, that of Escherichia coli GroEL which at 14 nm in diameter is the smallest biological sample ever imaged by X-rays, and demonstrate that the concept of diffraction before destruction extends to single proteins. From the pattern, it is possible to determine the approximate orientation of the protein. Our experiment demonstrates the feasibility of ultrafast imaging of single proteins, opening the way to single-molecule time-resolved studies on the femtosecond timescale. LB - PUB:(DE-HGF)16 C6 - pmid:38216563 UR - <Go to ISI:>//WOS:001142025600001 DO - DOI:10.1038/s41377-023-01352-7 UR - https://bib-pubdb1.desy.de/record/602204 ER -