000602204 001__ 602204
000602204 005__ 20250715170706.0
000602204 0247_ $$2doi$$a10.1038/s41377-023-01352-7
000602204 0247_ $$2ISSN$$a2047-7538
000602204 0247_ $$2ISSN$$a2095-5545
000602204 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-00530
000602204 0247_ $$2altmetric$$aaltmetric:158326516
000602204 0247_ $$2pmid$$apmid:38216563
000602204 0247_ $$2WOS$$aWOS:001142025600001
000602204 0247_ $$2openalex$$aopenalex:W4390820421
000602204 037__ $$aPUBDB-2024-00530
000602204 041__ $$aEnglish
000602204 082__ $$a530
000602204 1001_ $$0P:(DE-H253)PIP1007725$$aEkeberg, Tomas$$b0
000602204 245__ $$aObservation of a single protein by ultrafast X-ray diffraction
000602204 260__ $$aLondon$$bNature Publishing Group$$c2024
000602204 3367_ $$2DRIVER$$aarticle
000602204 3367_ $$2DataCite$$aOutput Types/Journal article
000602204 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1724151788_32
000602204 3367_ $$2BibTeX$$aARTICLE
000602204 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000602204 3367_ $$00$$2EndNote$$aJournal Article
000602204 520__ $$aThe idea of using ultrashort X-ray pulses to obtain images of single proteins frozen in time has fascinated and inspired many. It was one of the arguments for building X-ray free-electron lasers. According to theory, the extremely intense pulses provide sufficient signal to dispense with using crystals as an amplifier, and the ultrashort pulse duration permits capturing the diffraction data before the sample inevitably explodes. This was first demonstrated on biological samples a decade ago on the giant mimivirus. Since then, a large collaboration has been pushing the limit of the smallest sample that can be imaged. The ability to capture snapshots on the timescale of atomic vibrations, while keeping the sample at room temperature, may allow probing the entire conformational phase space of macromolecules. Here we show the first observation of an X-ray diffraction pattern from a single protein, that of Escherichia coli GroEL which at 14 nm in diameter is the smallest biological sample ever imaged by X-rays, and demonstrate that the concept of diffraction before destruction extends to single proteins. From the pattern, it is possible to determine the approximate orientation of the protein. Our experiment demonstrates the feasibility of ultrafast imaging of single proteins, opening the way to single-molecule time-resolved studies on the femtosecond timescale.
000602204 536__ $$0G:(DE-HGF)POF4-633$$a633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)$$cPOF4-633$$fPOF IV$$x0
000602204 536__ $$0G:(GEPRIS)390715994$$aDFG project 390715994 - EXC 2056: CUI: Advanced Imaging of Matter (390715994)$$c390715994$$x1
000602204 536__ $$0G:(EU-Grant)614507$$aCOMOTION - Controlling the Motion of Complex Molecules and Particles (614507)$$c614507$$fERC-2013-CoG$$x2
000602204 536__ $$0G:(DE-H253)DFG-Leibniz-2015-Chapman$$aLeibniz Preis - Leibiz Programm 2015: Prof. Dr. Henry N. Chapman (DFG-Leibniz-2015-Chapman)$$cDFG-Leibniz-2015-Chapman$$x3
000602204 542__ $$2Crossref$$i2024-01-12$$uhttps://creativecommons.org/licenses/by/4.0
000602204 542__ $$2Crossref$$i2024-01-12$$uhttps://creativecommons.org/licenses/by/4.0
000602204 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000602204 693__ $$0EXP:(DE-H253)XFEL-SPB-20150101$$1EXP:(DE-H253)XFEL-20150101$$5EXP:(DE-H253)XFEL-SPB-20150101$$6EXP:(DE-H253)XFEL-SASE1-20150101$$aXFEL$$eSPB: Single Particles, clusters & Biomolecules$$fSASE1$$x0
000602204 693__ $$0EXP:(DE-H253)CFEL-Exp-20150101$$5EXP:(DE-H253)CFEL-Exp-20150101$$eExperiments at CFEL$$x1
000602204 7001_ $$0P:(DE-H253)PIP1026644$$aAssalauova, Dameli$$b1
000602204 7001_ $$0P:(DE-H253)PIP1020945$$aBielecki, Johan$$b2
000602204 7001_ $$0P:(DE-H253)PIP1014282$$aBoll, Rebecca$$b3
000602204 7001_ $$0P:(DE-H253)PIP1018820$$aDaurer, Benedikt J.$$b4
000602204 7001_ $$0P:(DE-H253)PIP1085008$$aEichacker, Lutz A.$$b5
000602204 7001_ $$0P:(DE-H253)PIP1082301$$aFranken, Linda E.$$b6
000602204 7001_ $$0P:(DE-H253)PIP1084877$$aGalli, Davide E.$$b7
000602204 7001_ $$0P:(DE-H253)PIP1028523$$aGelisio, Luca$$b8
000602204 7001_ $$0P:(DE-H253)PIP1002488$$aGumprecht, Lars$$b9
000602204 7001_ $$0P:(DE-H253)PIP1091832$$aGunn, Laura H.$$b10
000602204 7001_ $$0P:(DE-H253)PIP1008254$$aHajdu, Janos$$b11
000602204 7001_ $$0P:(DE-H253)PIP1008172$$aHartmann, Robert$$b12
000602204 7001_ $$0P:(DE-HGF)0$$aHasse, Dirk$$b13
000602204 7001_ $$0P:(DE-H253)PIP1006454$$aIgnatenko, Alexandr$$b14
000602204 7001_ $$0P:(DE-H253)PIP1031917$$aKoliyadu, Jayanath$$b15$$udesy
000602204 7001_ $$0P:(DE-H253)PIP1030451$$aKulyk, Olena$$b16
000602204 7001_ $$0P:(DE-H253)PIP1007576$$aKurta, Ruslan$$b17
000602204 7001_ $$0P:(DE-H253)PIP1011922$$aKuster, Markus$$b18
000602204 7001_ $$0P:(DE-H253)PIP1021411$$aLugmayr, Wolfgang$$b19
000602204 7001_ $$0P:(DE-H253)PIP1083098$$aLübke, Jannik$$b20
000602204 7001_ $$0P:(DE-H253)PIP1006340$$aMancuso, Adrian P.$$b21
000602204 7001_ $$0P:(DE-H253)PIP1013759$$aMazza, Tommaso$$b22
000602204 7001_ $$0P:(DE-H253)PIP1082448$$aNettelblad, Carl$$b23
000602204 7001_ $$0P:(DE-H253)PIP1014906$$aOvcharenko, Yevheniy$$b24
000602204 7001_ $$0P:(DE-H253)PIP1086234$$aRivas, Daniel E.$$b25
000602204 7001_ $$0P:(DE-H253)PIP1021267$$aRose, Max$$b26
000602204 7001_ $$0P:(DE-H253)PIP1032102$$aSamanta, Amit K.$$b27
000602204 7001_ $$0P:(DE-H253)PIP1014429$$aSchmidt, Philipp$$b28
000602204 7001_ $$0P:(DE-H253)PIP1082551$$aSobolev, Egor$$b29
000602204 7001_ $$0P:(DE-H253)PIP1008264$$aTimneanu, Nicusor$$b30
000602204 7001_ $$0P:(DE-H253)PIP1013098$$aUsenko, Sergey$$b31
000602204 7001_ $$0P:(DE-H253)PIP1009012$$aWestphal, Daniel$$b32
000602204 7001_ $$0P:(DE-H253)PIP1088580$$aWollweber, Tamme$$b33
000602204 7001_ $$0P:(DE-H253)PIP1025342$$aWorbs, Lena$$b34
000602204 7001_ $$00000-0001-5132-2999$$aXavier, Paul Lourdu$$b35
000602204 7001_ $$0P:(DE-H253)PIP1086109$$aYousef, Hazem$$b36
000602204 7001_ $$0P:(DE-H253)PIP1023449$$aAyyer, Kartik$$b37
000602204 7001_ $$0P:(DE-H253)PIP1006324$$aChapman, Henry N.$$b38
000602204 7001_ $$0P:(DE-H253)PIP1014756$$aSellberg, Jonas A.$$b39
000602204 7001_ $$0P:(DE-H253)PIP1020921$$aSeuring, Carolin$$b40
000602204 7001_ $$0P:(DE-H253)PIP1003481$$aVartanyants, Ivan A.$$b41
000602204 7001_ $$0P:(DE-H253)PIP1012175$$aKüpper, Jochen$$b42
000602204 7001_ $$aMeyer, Michael$$b43
000602204 7001_ $$0P:(DE-H253)PIP1008707$$aMaia, Filipe R. N. C.$$b44$$eCorresponding author
000602204 77318 $$2Crossref$$3journal-article$$a10.1038/s41377-023-01352-7$$bSpringer Science and Business Media LLC$$d2024-01-12$$n1$$p15$$tLight: Science & Applications$$v13$$x2047-7538$$y2024
000602204 773__ $$0PERI:(DE-600)2662628-7$$a10.1038/s41377-023-01352-7$$gVol. 13, no. 1, p. 15$$n1$$p15$$tLight$$v13$$x2047-7538$$y2024
000602204 7870_ $$0PUBDB-2023-07149$$aEkeberg, Tomas et.al.$$d2023$$iIsParent$$r$$tObservation of a single protein by ultrafast X-ray diffraction
000602204 8564_ $$uhttps://bib-pubdb1.desy.de/record/602204/files/manuscript.pdf$$yOpenAccess
000602204 8564_ $$uhttps://bib-pubdb1.desy.de/record/602204/files/teaser%20image.gif$$yRestricted
000602204 8564_ $$uhttps://bib-pubdb1.desy.de/record/602204/files/manuscript.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000602204 8564_ $$uhttps://bib-pubdb1.desy.de/record/602204/files/teaser%20image.gif?subformat=icon$$xicon$$yRestricted
000602204 8564_ $$uhttps://bib-pubdb1.desy.de/record/602204/files/teaser%20image.jpg?subformat=icon-180$$xicon-180$$yRestricted
000602204 8564_ $$uhttps://bib-pubdb1.desy.de/record/602204/files/teaser%20image.jpg?subformat=icon-700$$xicon-700$$yRestricted
000602204 909CO $$ooai:bib-pubdb1.desy.de:602204$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000602204 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1007725$$aCentre for Free-Electron Laser Science$$b0$$kCFEL
000602204 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1007725$$aExternal Institute$$b0$$kExtern
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1007725$$aEuropean XFEL$$b0$$kXFEL.EU
000602204 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1026644$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000602204 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1026644$$aExternal Institute$$b1$$kExtern
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1026644$$aEuropean XFEL$$b1$$kXFEL.EU
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1020945$$aEuropean XFEL$$b2$$kXFEL.EU
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1014282$$aEuropean XFEL$$b3$$kXFEL.EU
000602204 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1018820$$aExternal Institute$$b4$$kExtern
000602204 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1085008$$aExternal Institute$$b5$$kExtern
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1085008$$aEuropean XFEL$$b5$$kXFEL.EU
000602204 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1082301$$aCentre for Structural Systems Biology$$b6$$kCSSB
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1084877$$aEuropean XFEL$$b7$$kXFEL.EU
000602204 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1028523$$aDeutsches Elektronen-Synchrotron$$b8$$kDESY
000602204 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1028523$$aCentre for Free-Electron Laser Science$$b8$$kCFEL
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1028523$$aEuropean XFEL$$b8$$kXFEL.EU
000602204 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002488$$aDeutsches Elektronen-Synchrotron$$b9$$kDESY
000602204 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1002488$$aCentre for Free-Electron Laser Science$$b9$$kCFEL
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1002488$$aEuropean XFEL$$b9$$kXFEL.EU
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1091832$$aEuropean XFEL$$b10$$kXFEL.EU
000602204 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1091832$$aExternal Institute$$b10$$kExtern
000602204 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008254$$aExternal Institute$$b11$$kExtern
000602204 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008172$$aExternal Institute$$b12$$kExtern
000602204 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1006454$$aDeutsches Elektronen-Synchrotron$$b14$$kDESY
000602204 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1006454$$aCentre for Free-Electron Laser Science$$b14$$kCFEL
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1006454$$aEuropean XFEL$$b14$$kXFEL.EU
000602204 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1031917$$aDeutsches Elektronen-Synchrotron$$b15$$kDESY
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1031917$$aEuropean XFEL$$b15$$kXFEL.EU
000602204 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1030451$$aExternal Institute$$b16$$kExtern
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1007576$$aEuropean XFEL$$b17$$kXFEL.EU
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1011922$$aEuropean XFEL$$b18$$kXFEL.EU
000602204 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1021411$$aCentre for Structural Systems Biology$$b19$$kCSSB
000602204 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1083098$$aCentre for Free-Electron Laser Science$$b20$$kCFEL
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1083098$$aEuropean XFEL$$b20$$kXFEL.EU
000602204 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1083098$$aExternal Institute$$b20$$kExtern
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1006340$$aEuropean XFEL$$b21$$kXFEL.EU
000602204 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1006340$$aExternal Institute$$b21$$kExtern
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1013759$$aEuropean XFEL$$b22$$kXFEL.EU
000602204 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1082448$$aExternal Institute$$b23$$kExtern
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1082448$$aEuropean XFEL$$b23$$kXFEL.EU
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1014906$$aEuropean XFEL$$b24$$kXFEL.EU
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1086234$$aEuropean XFEL$$b25$$kXFEL.EU
000602204 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1021267$$aExternal Institute$$b26$$kExtern
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1021267$$aEuropean XFEL$$b26$$kXFEL.EU
000602204 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1032102$$aDeutsches Elektronen-Synchrotron$$b27$$kDESY
000602204 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1032102$$aCentre for Free-Electron Laser Science$$b27$$kCFEL
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1032102$$aEuropean XFEL$$b27$$kXFEL.EU
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1014429$$aEuropean XFEL$$b28$$kXFEL.EU
000602204 9101_ $$0I:(DE-588b)235011-7$$6P:(DE-H253)PIP1082551$$aEuropean Molecular Biology Laboratory$$b29$$kEMBL
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1082551$$aEuropean XFEL$$b29$$kXFEL.EU
000602204 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008264$$aExternal Institute$$b30$$kExtern
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1013098$$aEuropean XFEL$$b31$$kXFEL.EU
000602204 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1009012$$aExternal Institute$$b32$$kExtern
000602204 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1088580$$aExternal Institute$$b33$$kExtern
000602204 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1025342$$aDeutsches Elektronen-Synchrotron$$b34$$kDESY
000602204 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1025342$$aCentre for Free-Electron Laser Science$$b34$$kCFEL
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1025342$$aEuropean XFEL$$b34$$kXFEL.EU
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1086109$$aEuropean XFEL$$b36$$kXFEL.EU
000602204 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1023449$$aCentre for Free-Electron Laser Science$$b37$$kCFEL
000602204 9101_ $$0I:(DE-588b)2019024-4$$6P:(DE-H253)PIP1023449$$aMax-Planck-Gesellschaft zur Förderung der Wissenschaften$$b37$$kMPG
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1023449$$aEuropean XFEL$$b37$$kXFEL.EU
000602204 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1006324$$aDeutsches Elektronen-Synchrotron$$b38$$kDESY
000602204 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1006324$$aCentre for Free-Electron Laser Science$$b38$$kCFEL
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1006324$$aEuropean XFEL$$b38$$kXFEL.EU
000602204 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1014756$$aExternal Institute$$b39$$kExtern
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1014756$$aEuropean XFEL$$b39$$kXFEL.EU
000602204 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1020921$$aCentre for Free-Electron Laser Science$$b40$$kCFEL
000602204 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1020921$$aCentre for Structural Systems Biology$$b40$$kCSSB
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1020921$$aEuropean XFEL$$b40$$kXFEL.EU
000602204 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003481$$aDeutsches Elektronen-Synchrotron$$b41$$kDESY
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1003481$$aEuropean XFEL$$b41$$kXFEL.EU
000602204 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1012175$$aDeutsches Elektronen-Synchrotron$$b42$$kDESY
000602204 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1012175$$aCentre for Free-Electron Laser Science$$b42$$kCFEL
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1012175$$aEuropean XFEL$$b42$$kXFEL.EU
000602204 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008707$$aExternal Institute$$b44$$kExtern
000602204 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1008707$$aEuropean XFEL$$b44$$kXFEL.EU
000602204 9131_ $$0G:(DE-HGF)POF4-633$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vLife Sciences – Building Blocks of Life: Structure and Function$$x0
000602204 9141_ $$y2024
000602204 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000602204 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000602204 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLIGHT-SCI APPL : 2022$$d2024-12-12
000602204 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12
000602204 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12
000602204 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:42:09Z
000602204 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:42:09Z
000602204 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:42:09Z
000602204 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12
000602204 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-12
000602204 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-12
000602204 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12
000602204 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bLIGHT-SCI APPL : 2022$$d2024-12-12
000602204 9201_ $$0I:(DE-H253)FS-CFEL-CMI-20220405$$kFS-CFEL-CMI$$lCFEL-CMI$$x0
000602204 9201_ $$0I:(DE-H253)CFEL-I-20161114$$kCFEL-I$$lFS-CFEL-1 (Group Leader: Henry Chapman)$$x1
000602204 9201_ $$0I:(DE-H253)CFEL-CNI-20190417$$kCFEL-CNI$$lComputational Nanoscale Imaging$$x2
000602204 9201_ $$0I:(DE-H253)FS-PS-20131107$$kFS-PS$$lFS-Photon Science$$x3
000602204 9201_ $$0I:(DE-H253)UNI_EXP-20120731$$kUNI/EXP$$lUni Hamburg / Experimentalphysik$$x4
000602204 9201_ $$0I:(DE-H253)UNI_CUI-20121230$$kUNI/CUI$$lbeauftragt von UNI$$x5
000602204 980__ $$ajournal
000602204 980__ $$aVDB
000602204 980__ $$aI:(DE-H253)FS-CFEL-CMI-20220405
000602204 980__ $$aI:(DE-H253)CFEL-I-20161114
000602204 980__ $$aI:(DE-H253)CFEL-CNI-20190417
000602204 980__ $$aI:(DE-H253)FS-PS-20131107
000602204 980__ $$aI:(DE-H253)UNI_EXP-20120731
000602204 980__ $$aI:(DE-H253)UNI_CUI-20121230
000602204 980__ $$aUNRESTRICTED
000602204 9801_ $$aFullTexts
000602204 999C5 $$1R Mankowsky$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature13875$$p71 -$$tNature$$uMankowsky, R. et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature 516, 71–73 (2014).$$v516$$y2014
000602204 999C5 $$1ZH Loh$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aaz4740$$p179 -$$tScience$$uLoh, Z. H. et al. Observation of the fastest chemical processes in the radiolysis of water. Science 367, 179–182 (2020).$$v367$$y2020
000602204 999C5 $$1HN Chapman$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature09750$$p73 -$$tNature$$uChapman, H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011).$$v470$$y2011
000602204 999C5 $$1J Tenboer$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1259357$$p1242 -$$tScience$$uTenboer, J. et al. Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science 346, 1242–1246 (2014).$$v346$$y2014
000602204 999C5 $$1E Nogales$$2Crossref$$9-- missing cx lookup --$$a10.1038/nmeth.3694$$p24 -$$tNat. Methods$$uNogales, E. The development of cryo-EM into a mainstream structural biology technique. Nat. Methods 13, 24–27 (2016).$$v13$$y2016
000602204 999C5 $$1J Frank$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jsb.2017.06.005$$p303 -$$tJ. Struct. Biol.$$uFrank, J. Time-resolved cryo-electron microscopy: recent progress. J. Struct. Biol. 200, 303–306 (2017).$$v200$$y2017
000602204 999C5 $$1R Neutze$$2Crossref$$9-- missing cx lookup --$$a10.1038/35021099$$p752 -$$tNature$$uNeutze, R. et al. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000).$$v406$$y2000
000602204 999C5 $$1M Hayer-Hartl$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.tibs.2015.07.009$$p62 -$$tTrends Biochem. Sci.$$uHayer-Hartl, M., Bracher, A. & Hartl, F. U. The GroEL-GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem. Sci. 41, 62–76 (2016).$$v41$$y2016
000602204 999C5 $$1K Braig$$2Crossref$$9-- missing cx lookup --$$a10.1038/371578a0$$p578 -$$tNature$$uBraig, K. et al. The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature 371, 578–586 (1994).$$v371$$y1994
000602204 999C5 $$1AA Rostom$$2Crossref$$9-- missing cx lookup --$$a10.1021/ja990238r$$p4718 -$$tJ. Am. Chem. Soc.$$uRostom, A. A. & Robinson, C. V. Detection of the intact groel chaperonin assembly by mass spectrometry. J. Am. Chem. Soc. 121, 4718–4719 (1999).$$v121$$y1999
000602204 999C5 $$1RJ Rose$$2Crossref$$9-- missing cx lookup --$$a10.1038/nmeth.2208$$p1084 -$$tNat. Methods$$uRose, R. J. et al. High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat. Methods 9, 1084–1086 (2012).$$v9$$y2012
000602204 999C5 $$1RHH van den Heuvel$$2Crossref$$9-- missing cx lookup --$$a10.1021/ac061039a$$p7473 -$$tAnal. Chem.$$uvan den Heuvel, R. H. H. et al. Improving the performance of a quadrupole time-of-flight instrument for macromolecular mass spectrometry. Anal. Chem. 78, 7473–7483 (2006).$$v78$$y2006
000602204 999C5 $$1F Sobott$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ijms.2004.05.010$$p25 -$$tInt. J. Mass Spectrom.$$uSobott, F. & Robinson, C. V. Characterising electrosprayed biomolecules using tandem-MS—the noncovalent GroEL chaperonin assembly. Int. J. Mass Spectrom. 236, 25–32 (2004).$$v236$$y2004
000602204 999C5 $$1AM Roseman$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0092-8674(00)81342-2$$p241 -$$tCell$$uRoseman, A. M. et al. The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell 87, 241–251 (1996).$$v87$$y1996
000602204 999C5 $$1SJ Ludtke$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.str.2004.05.006$$p1129 -$$tStructure$$uLudtke, S. J. et al. Seeing GroEL at 6 Å resolution by single particle electron cryomicroscopy. Structure 12, 1129–1136 (2004).$$v12$$y2004
000602204 999C5 $$1MM Seibert$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature09748$$p78 -$$tNature$$uSeibert, M. M. et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470, 78–81 (2011).$$v470$$y2011
000602204 999C5 $$1A Aquila$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4918726$$p041701 -$$tStruct. Dyn.$$uAquila, A. et al. The linac coherent light source single particle imaging road map. Struct. Dyn. 2, 041701 (2015).$$v2$$y2015
000602204 999C5 $$1BJ Daurer$$2Crossref$$9-- missing cx lookup --$$a10.1107/S2052252517003591$$p251 -$$tIUCrJ$$uDaurer, B. J. et al. Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses. IUCrJ 4, 251–262 (2017).$$v4$$y2017
000602204 999C5 $$1K Ayyer$$2Crossref$$9-- missing cx lookup --$$a10.1364/OE.27.037816$$p37816 -$$tOpt. Express$$uAyyer, K. et al. Low-signal limit of X-ray single particle diffractive imaging. Opt. Express 27, 37816–37833 (2019).$$v27$$y2019
000602204 999C5 $$1T Ekeberg$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.114.098102$$p098102 -$$tPhys. Rev. Lett.$$uEkeberg, T. et al. Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser. Phys. Rev. Lett. 114, 098102 (2015).$$v114$$y2015
000602204 999C5 $$1G van der Schot$$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms6704$$tNat. Commun.$$uvan der Schot, G. et al. Imaging single cells in a beam of live cyanobacteria with an X-ray laser. Nat. Commun. 6, 5704 (2015).$$v6$$y2015
000602204 999C5 $$1J Bielecki$$2Crossref$$9-- missing cx lookup --$$a10.1126/sciadv.aav8801$$peaav8801 -$$tSci. Adv.$$uBielecki, J. et al. Electrospray sample injection for single-particle imaging with x-ray lasers. Sci. Adv. 5, eaav8801 (2019).$$v5$$y2019
000602204 999C5 $$1HN Chapman$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys461$$p839 -$$tNat. Phys.$$uChapman, H. N. et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat. Phys. 2, 839–843 (2006).$$v2$$y2006
000602204 999C5 $$1T Tschentscher$$2Crossref$$9-- missing cx lookup --$$a10.3390/app7060592$$p592 -$$tAppl. Sci.$$uTschentscher, T. et al. Photon beam transport and scientific instruments at the european XFEL. Appl. Sci. 7, 592 (2017).$$v7$$y2017
000602204 999C5 $$1MF Hantke$$2Crossref$$9-- missing cx lookup --$$a10.1107/S2052252518010837$$p673 -$$tIUCrJ$$uHantke, M. F. et al. Rayleigh-scattering microscopy for tracking and sizing nanoparticles in focused aerosol beams. IUCrJ 5, 673–680 (2018).$$v5$$y2018
000602204 999C5 $$1M Kuster$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600577520015659$$p576 -$$tJ. Synchrotron Radiat.$$uKuster, M. et al. The 1-Megapixel pnCCD detector for the Small Quantum Systems Instrument at the European XFEL: system and operation aspects. J. Synchrotron Radiat. 28, 576–587 (2021).$$v28$$y2021
000602204 999C5 $$1L Strüder$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2009.12.053$$p483 -$$tNucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip.$$uStrüder, L. et al. Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 614, 483–496 (2010).$$v614$$y2010
000602204 999C5 $$1W Decking$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-020-0607-z$$p391 -$$tNat. Photonics$$uDecking, W. et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photonics 14, 391–397 (2020).$$v14$$y2020
000602204 999C5 $$1C Chaudhry$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmb.2004.07.015$$p229 -$$tJ. Mol. Biol.$$uChaudhry, C., Horwich, A. L., Brunger, A. T. & Adams, P. D. Exploring the structural dynamics of the E. coli chaperonin GroEL using translation-libration-screw crystallographic refinement of intermediate states. J. Mol. Biol. 342, 229–245 (2004).$$v342$$y2004
000602204 999C5 $$1CJ Hogan$$2Crossref$$9-- missing cx lookup --$$a10.1021/jp109172k$$p3614 -$$tJ. Phys. Chem. B$$uHogan, C. J. et al. Tandem differential mobility analysis-mass spectrometry reveals partial gas-phase collapse of the GroEL complex. J. Phys. Chem. B 115, 3614–3621 (2011).$$v115$$y2011
000602204 999C5 $$1EG Marklund$$2Crossref$$9-- missing cx lookup --$$a10.1039/b903846a$$p8069 -$$tPhys. Chem. Chem. Phys.$$uMarklund, E. G., Larsson, D. S. D., van der Spoel, D., Patriksson, A. & Caleman, C. Structural stability of electrosprayed proteins: temperature and hydration effects. Phys. Chem. Chem. Phys. 11, 8069–8078 (2009).$$v11$$y2009
000602204 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1101/2023.08.17.553673$$uEsser, T. K. et al. Cryo-EM of soft-landed β-galactosidase: Gas-phase and native structures are remarkably similar. Preprint at BioRxiv https://doi.org/10.1101/2023.08.17.553673 (2023).
000602204 999C5 $$1SP Hau-Riege$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.104.064801$$p064801 -$$tPhys. Rev. Lett.$$uHau-Riege, S. P. et al. Sacrificial tamper slows down sample explosion in FLASH diffraction experiments. Phys. Rev. Lett. 104, 064801 (2010).$$v104$$y2010
000602204 999C5 $$1FRNC Maia$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.80.031905$$p031905 -$$tPhys. Rev. E$$uMaia, F. R. N. C., Ekeberg, T., Tîmneanu, N., van der Spoel, D. & Hajdu, J. Structural variability and the incoherent addition of scattered intensities in single-particle diffraction. Phys. Rev. E 80, 031905 (2009).$$v80$$y2009
000602204 999C5 $$1M Porro$$2Crossref$$9-- missing cx lookup --$$a10.1109/TNS.2021.3076602$$p1334 -$$tIEEE Trans. Nucl. Sci.$$uPorro, M. et al. The MiniSDD-based 1-Megapixel Camera of the DSSC Project for the European XFEL. IEEE Trans. Nucl. Sci. 68, 1334–1350, https://doi.org/10.1109/TNS.2021.3076602 (2021).$$v68$$y2021
000602204 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.18429/jacow-icalepcs2019-thapp05$$uGessler, P. et al. Overview of acquisition and control electronics and concepts for experiments and beam transport at the European XFEL. In Proceedings of the 17th Biennial International Conference on Accelerator and Large Experimental Physics Control Systems. New York, https://doi.org/10.18429/jacow-icalepcs2019-thapp05 (2020).
000602204 999C5 $$1E Motuk$$2Crossref$$9-- missing cx lookup --$$a10.1088/1748-0221/7/01/C01062$$pC01062 -$$tJ. Instrum.$$uMotuk, E. et al. Design and development of electronics for the EuXFEL clock and control system. J. Instrum. 7, C01062 (2012).$$v7$$y2012
000602204 999C5 $$1T Maltezopoulos$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600577519003795$$p1045 -$$tJ. Synchrotron Radiat.$$uMaltezopoulos, T. et al. Operation of X-ray gas monitors at the European XFEL. J. Synchrotron Radiat. 26, 1045–1051 (2019).$$v26$$y2019
000602204 999C5 $$1BJ Daurer$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600576716005926$$p1042 -$$tJ. Appl. Crystallogr.$$uDaurer, B. J., Hantke, M. F., Nettelblad, C. & Maia, F. R. N. C. Hummingbird: monitoring and analyzing flash X-ray imaging experiments in real time. J. Appl. Crystallogr. 49, 1042–1047 (2016).$$v49$$y2016
000602204 999C5 $$1MJ Abraham$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.softx.2015.06.001$$p19 -$$tSoftwareX$$uAbraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).$$v1–2$$y2015
000602204 999C5 $$1MF Hantke$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600576716009213$$p1356 -$$tJ. Appl. Crystallogr.$$uHantke, M. F., Ekeberg, T. & Maia, F. R. N. C. Condor: a simulation tool for flash X-ray imaging. J. Appl. Crystallogr. 49, 1356–1362 (2016).$$v49$$y2016
000602204 999C5 $$1N-TD Loh$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.80.026705$$p026705 -$$tPhys. Rev. E$$uLoh, N.-T. D. & Elser, V. Reconstruction algorithm for single-particle diffraction imaging experiments. Phys. Rev. E 80, 026705 (2009).$$v80$$y2009
000602204 999C5 $$1P Virtanen$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41592-019-0686-2$$p261 -$$tNat. Methods$$uVirtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).$$v17$$y2020
000602204 999C5 $$1J Freeke$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ijms.2009.08.001$$p91 -$$tInt. J. Mass Spectrom.$$uFreeke, J., Robinson, C. V. & Ruotolo, B. T. Residual counter ions can stabilise a large protein complex in the gas phase. Int. J. Mass Spectrom. 298, 91–98 (2010).$$v298$$y2010
000602204 999C5 $$1J Zivanov$$2Crossref$$9-- missing cx lookup --$$a10.7554/eLife.42166$$pe42166 -$$teLife$$uZivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).$$v7$$y2018
000602204 999C5 $$1A Punjani$$2Crossref$$9-- missing cx lookup --$$a10.1038/nmeth.4169$$p290 -$$tNat. Methods$$uPunjani, A. et al. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).$$v14$$y2017
000602204 999C5 $$1SQ Zheng$$2Crossref$$9-- missing cx lookup --$$a10.1038/nmeth.4193$$p331 -$$tNat. Methods$$uZheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).$$v14$$y2017
000602204 999C5 $$1K Zhang$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jsb.2015.11.003$$p1 -$$tJ. Struct. Biol.$$uZhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).$$v193$$y2016
000602204 999C5 $$1S-H Roh$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.1704725114$$p8259 -$$tProc. Natl Acad. Sci. USA$$uRoh, S.-H. et al. Subunit conformational variation within individual GroEL oligomers resolved by Cryo-EM. Proc. Natl Acad. Sci. USA 114, 8259–8264 (2017).$$v114$$y2017
000602204 999C5 $$1EF Pettersen$$2Crossref$$9-- missing cx lookup --$$a10.1002/jcc.20084$$p1605 -$$tJ. Comput. Chem.$$uPettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).$$v25$$y2004
000602204 999C5 $$1T Wagner$$2Crossref$$9-- missing cx lookup --$$a10.1038/s42003-019-0437-z$$p218 -$$tCommun. Biol.$$uWagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 218 (2019).$$v2$$y2019
000602204 999C5 $$1FRNC Maia$$2Crossref$$9-- missing cx lookup --$$a10.1038/nmeth.2110$$p854 -$$tNat. Methods$$uMaia, F. R. N. C. The Coherent X-ray Imaging Data Bank. Nat. Methods 9, 854–855 (2012).$$v9$$y2012
000602204 999C5 $$1MO Wiedorn$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600577517011961$$p1296 -$$tJ. Synchrotron Radiat.$$uWiedorn, M. O. et al. Post-sample aperture for low background diffraction experiments at X-ray free-electron lasers. J. Synchrotron Radiat. 24, 1296–1298 (2017).$$v24$$y2017