001     602201
005     20250715170715.0
024 7 _ |a 10.1103/PhysRevD.109.023502
|2 doi
024 7 _ |a Batini:2023zpi
|2 INSPIRETeX
024 7 _ |a inspire:2709220
|2 inspire
024 7 _ |a 2470-0010
|2 ISSN
024 7 _ |a 2470-0037
|2 ISSN
024 7 _ |a 2470-0029
|2 ISSN
024 7 _ |a arXiv:2310.04206
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2024-00527
|2 datacite_doi
024 7 _ |a altmetric:155246779
|2 altmetric
024 7 _ |a WOS:001174871900002
|2 WOS
024 7 _ |2 openalex
|a openalex:W4390508629
037 _ _ |a PUBDB-2024-00527
041 _ _ |a English
082 _ _ |a 530
088 _ _ |a arXiv:2310.04206
|2 arXiv
088 _ _ |a DESY-23-158
|2 DESY
088 _ _ |a NORDITA 2023-082
|2 Other
100 1 _ |a Batini, Laura
|0 0009-0007-4129-4251
|b 0
|e Corresponding author
245 _ _ |a Real-time dynamics of false vacuum decay
260 _ _ |a Ridge, NY
|c 2024
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1729674651_722001
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Phys. Rev. D 109 (2024) 2, 023502. 18 pages, 12 figures. v2: journal version
520 _ _ |a We investigate false vacuum decay of a relativistic scalar field initialized in the metastable minimum of an asymmetric double-well potential. The transition to the true ground state is a well-defined initial-value problem in real time, which can be formulated in nonequilibrium quantum field theory on a closed time path. We employ the nonperturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion. We also compare to classical-statistical field theory simulations on a lattice in the high-temperature regime. By this, we demonstrate that the real-time decay rates are comparable to those obtained from the conventional Euclidean (bounce) approach. In general, we find that the decay rates are time dependent. For a more comprehensive description of the dynamics, we extract a time-dependent effective potential, which becomes convex during the nonequilibrium transition process. By solving the quantum evolution equations for the one- and two-point correlation functions for vacuum initial conditions, we demonstrate that quantum corrections can lead to transitions that are not captured by classical-statistical approximations.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)390833306 - EXC 2121: Quantum Universe (390833306)
|0 G:(GEPRIS)390833306
|c 390833306
|x 1
536 _ _ |a DFG project G:(GEPRIS)390900948 - EXC 2181: STRUKTUREN: Emergenz in Natur, Mathematik und komplexen Daten (390900948)
|0 G:(GEPRIS)390900948
|c 390900948
|x 2
542 _ _ |i 2024-01-02
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
650 _ 7 |a false vacuum: decay
|2 INSPIRE
650 _ 7 |a higher-order: 1
|2 INSPIRE
650 _ 7 |a field theory: scalar
|2 INSPIRE
650 _ 7 |a two-point function
|2 INSPIRE
650 _ 7 |a ground state
|2 INSPIRE
650 _ 7 |a expansion 1/N
|2 INSPIRE
650 _ 7 |a effective action
|2 INSPIRE
650 _ 7 |a asymmetry
|2 INSPIRE
650 _ 7 |a nonperturbative
|2 INSPIRE
650 _ 7 |a two-particle
|2 INSPIRE
650 _ 7 |a boundary condition
|2 INSPIRE
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Chatrchyan, Aleksandr
|0 P:(DE-H253)PIP1094129
|b 1
700 1 _ |a Berges, Jürgen
|b 2
773 1 8 |a 10.1103/physrevd.109.023502
|b American Physical Society (APS)
|d 2024-01-02
|n 2
|p 023502
|3 journal-article
|2 Crossref
|t Physical Review D
|v 109
|y 2024
|x 2470-0010
773 _ _ |a 10.1103/PhysRevD.109.023502
|g Vol. 109, no. 2, p. 023502
|0 PERI:(DE-600)2844732-3
|n 2
|p 023502
|t Physical review / D
|v 109
|y 2024
|x 2470-0010
787 0 _ |a Batini, Laura et.al.
|d 2023
|i IsParent
|0 PUBDB-2023-06184
|r DESY-23-158 ; arXiv:2310.04206
|t Real-time dynamics of false vacuum decay
856 4 _ |u https://bib-pubdb1.desy.de/record/602201/files/PhysRevD.109.023502.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/602201/files/PhysRevD.109.023502.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:602201
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1094129
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2023-08-22
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a SCOAP3
|0 StatID:(DE-HGF)0570
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2023-08-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV D : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a No Peer Review
|0 StatID:(DE-HGF)0020
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PHYS REV D : 2022
|d 2024-12-10
920 1 _ |0 I:(DE-H253)T-20120731
|k T
|l Theorie-Gruppe
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)T-20120731
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |a 10.1016/0370-1573(89)90061-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.40.613
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.physletb.2012.02.013
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/JHEP10(2012)140
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.3389/fspas.2018.00040
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.45.2685
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0370-2693(93)91111-Y
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.50.774
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/14/12/125003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0370-2693(82)91219-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 A. D. Linde
|y 1990
|2 Crossref
|t Particle Physics and Inflationary Cosmology
|o A. D. Linde Particle Physics and Inflationary Cosmology 1990
999 C 5 |a 10.1103/PhysRevD.84.043513
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.21.973
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.15.2929
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.16.1248
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.16.1762
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1017/CBO9780511565045
|1 S. Coleman
|2 Crossref
|9 -- missing cx lookup --
|y 1985
999 C 5 |a 10.1016/0370-2693(81)90281-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0550-3213(83)90293-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0550-3213(83)90072-X
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/978-3-319-31933-9
|1 M. Laine
|2 Crossref
|9 -- missing cx lookup --
|y 2016
999 C 5 |a 10.1103/PhysRevD.95.085011
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.72.125004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.69.045012
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.68.025014
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.94.151601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1201/9780429493492
|1 N. Goldenfeld
|2 Crossref
|9 -- missing cx lookup --
|y 2018
999 C 5 |1 L. V. Keldysh
|y 1964
|2 Crossref
|o L. V. Keldysh 1964
999 C 5 |1 L. V. Keldysh
|y 1965
|2 Crossref
|o L. V. Keldysh 1965
999 C 5 |a 10.1016/S0375-9474(01)01295-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.66.045008
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1126-6708/2004/10/017
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.123.031601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.129.059901
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.105.043510
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/JHEP09(2022)206
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.62.085013
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.107.083509
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.48.2838
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.104.096015
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevX.10.011020
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41567-020-0933-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1209/0295-5075/110/56001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1361-6455/50/2/024003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/JHEP07(2018)014
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.100.065016
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.105.L041301
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/accca2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.104.L201106
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1017/CBO9780511535123
|1 E. A. Calzetta
|2 Crossref
|9 -- missing cx lookup --
|y 2008
999 C 5 |a 10.1016/S0550-3213(99)00285-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.63.045002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0370-2693(93)90365-O
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0370-1573(01)00098-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.93.142002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 Q. Kong
|y 2021
|2 Crossref
|t Python Programming and Numerical Methods
|o Q. Kong Python Programming and Numerical Methods 2021
999 C 5 |1 S. Borsanyi
|2 Crossref
|o S. Borsanyi
999 C 5 |a 10.1103/PhysRevD.23.876
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.64.105010
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.91.111601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1126-6708/2004/10/017
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0375-9474(01)01295-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.69.025006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1140/epja/i2005-10305-x
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevD.102.016012
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21