Home > Publications database > Plastid-localized xanthorhodopsin increases diatom biomass and ecosystem productivity in iron-limited surface oceans > print |
001 | 601930 | ||
005 | 20250929153626.0 | ||
024 | 7 | _ | |a 10.1038/s41564-023-01498-5 |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2024-00420 |2 datacite_doi |
024 | 7 | _ | |a altmetric:155437311 |2 altmetric |
024 | 7 | _ | |a pmid:37845316 |2 pmid |
024 | 7 | _ | |a WOS:001090801200001 |2 WOS |
024 | 7 | _ | |a openalex:W4387674141 |2 openalex |
037 | _ | _ | |a PUBDB-2024-00420 |
041 | _ | _ | |a English |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Strauss, Jan |0 P:(DE-H253)PIP1081588 |b 0 |e Corresponding author |
245 | _ | _ | |a Plastid-localized xanthorhodopsin increases diatom biomass and ecosystem productivity in iron-limited surface oceans |
260 | _ | _ | |a London |c 2023 |b Nature Publishing Group |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1725358504_1703675 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Microbial rhodopsins are photoreceptor proteins that convert light into biological signals or energy. Proteins of the xanthorhodopsin family are common in eukaryotic photosynthetic plankton including diatoms. However, their biological role in these organisms remains elusive. Here we report on a xanthorhodopsin variant (FcR1) isolated from the polar diatom Fragilariopsis cylindrus. Applying a combination of biophysical, biochemical and reverse genetics approaches, we demonstrate that FcR1 is a plastid-localized proton pump which binds the chromophore retinal and is activated by green light. Enhanced growth of a Thalassiora pseudonana gain-of-function mutant expressing FcR1 under iron limitation shows that the xanthorhodopsin proton pump supports growth when chlorophyll-based photosynthesis is iron-limited. The abundance of xanthorhodopsin transcripts in natural diatom communities of the surface oceans is anticorrelated with the availability of dissolved iron. Thus, we propose that these proton pumps convey a fitness advantage in regions where phytoplankton growth is limited by the availability of dissolved iron. |
536 | _ | _ | |a 899 - ohne Topic (POF4-899) |0 G:(DE-HGF)POF4-899 |c POF4-899 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Deng, Longji |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Gao, Shiqiang |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Toseland, Andrew |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Bachy, Charles |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Zhang, Chong |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Kirkham, Amy |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Hopes, Amanda |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Utting, Robert |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Joest, Eike F. |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Tagliabue, Alessandro |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Loew, Christian |0 P:(DE-H253)PIP1023783 |b 11 |
700 | 1 | _ | |a Worden, Alexandra Z. |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Nagel, Georg |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Mock, Thomas |0 P:(DE-HGF)0 |b 14 |e Corresponding author |
773 | _ | _ | |a 10.1038/s41564-023-01498-5 |g Vol. 8, no. 11, p. 2050 - 2066 |0 PERI:(DE-600)2845610-5 |n 11 |p 2050 - 2066 |t Nature microbiology |v 8 |y 2023 |x 2058-5276 |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/601930/files/s41564-023-01498-5.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/601930/files/s41564-023-01498-5.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:601930 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 0 |6 P:(DE-H253)PIP1081588 |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 11 |6 P:(DE-H253)PIP1023783 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-10-27 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2023-10-27 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT MICROBIOL : 2022 |d 2023-10-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-27 |
915 | _ | _ | |a DEAL Nature |0 StatID:(DE-HGF)3003 |2 StatID |d 2023-10-27 |w ger |
915 | _ | _ | |a IF >= 25 |0 StatID:(DE-HGF)9925 |2 StatID |b NAT MICROBIOL : 2022 |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-27 |
920 | 1 | _ | |0 I:(DE-H253)CSSB-EMBL-CL-20210806 |k CSSB-EMBL-CL |l CSSB-EMBL-CL |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)CSSB-EMBL-CL-20210806 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|