001     601930
005     20250929153626.0
024 7 _ |a 10.1038/s41564-023-01498-5
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-00420
|2 datacite_doi
024 7 _ |a altmetric:155437311
|2 altmetric
024 7 _ |a pmid:37845316
|2 pmid
024 7 _ |a WOS:001090801200001
|2 WOS
024 7 _ |a openalex:W4387674141
|2 openalex
037 _ _ |a PUBDB-2024-00420
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Strauss, Jan
|0 P:(DE-H253)PIP1081588
|b 0
|e Corresponding author
245 _ _ |a Plastid-localized xanthorhodopsin increases diatom biomass and ecosystem productivity in iron-limited surface oceans
260 _ _ |a London
|c 2023
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1725358504_1703675
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Microbial rhodopsins are photoreceptor proteins that convert light into biological signals or energy. Proteins of the xanthorhodopsin family are common in eukaryotic photosynthetic plankton including diatoms. However, their biological role in these organisms remains elusive. Here we report on a xanthorhodopsin variant (FcR1) isolated from the polar diatom Fragilariopsis cylindrus. Applying a combination of biophysical, biochemical and reverse genetics approaches, we demonstrate that FcR1 is a plastid-localized proton pump which binds the chromophore retinal and is activated by green light. Enhanced growth of a Thalassiora pseudonana gain-of-function mutant expressing FcR1 under iron limitation shows that the xanthorhodopsin proton pump supports growth when chlorophyll-based photosynthesis is iron-limited. The abundance of xanthorhodopsin transcripts in natural diatom communities of the surface oceans is anticorrelated with the availability of dissolved iron. Thus, we propose that these proton pumps convey a fitness advantage in regions where phytoplankton growth is limited by the availability of dissolved iron.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Deng, Longji
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gao, Shiqiang
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Toseland, Andrew
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bachy, Charles
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zhang, Chong
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kirkham, Amy
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Hopes, Amanda
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Utting, Robert
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Joest, Eike F.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Tagliabue, Alessandro
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Loew, Christian
|0 P:(DE-H253)PIP1023783
|b 11
700 1 _ |a Worden, Alexandra Z.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Nagel, Georg
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Mock, Thomas
|0 P:(DE-HGF)0
|b 14
|e Corresponding author
773 _ _ |a 10.1038/s41564-023-01498-5
|g Vol. 8, no. 11, p. 2050 - 2066
|0 PERI:(DE-600)2845610-5
|n 11
|p 2050 - 2066
|t Nature microbiology
|v 8
|y 2023
|x 2058-5276
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/601930/files/s41564-023-01498-5.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/601930/files/s41564-023-01498-5.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:601930
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 0
|6 P:(DE-H253)PIP1081588
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 11
|6 P:(DE-H253)PIP1023783
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-10-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT MICROBIOL : 2022
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2023-10-27
|w ger
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b NAT MICROBIOL : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
920 1 _ |0 I:(DE-H253)CSSB-EMBL-CL-20210806
|k CSSB-EMBL-CL
|l CSSB-EMBL-CL
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)CSSB-EMBL-CL-20210806
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21