000601930 001__ 601930
000601930 005__ 20250929153626.0
000601930 0247_ $$2doi$$a10.1038/s41564-023-01498-5
000601930 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-00420
000601930 0247_ $$2altmetric$$aaltmetric:155437311
000601930 0247_ $$2pmid$$apmid:37845316
000601930 0247_ $$2WOS$$aWOS:001090801200001
000601930 0247_ $$2openalex$$aopenalex:W4387674141
000601930 037__ $$aPUBDB-2024-00420
000601930 041__ $$aEnglish
000601930 082__ $$a570
000601930 1001_ $$0P:(DE-H253)PIP1081588$$aStrauss, Jan$$b0$$eCorresponding author
000601930 245__ $$aPlastid-localized xanthorhodopsin increases diatom biomass and ecosystem productivity in iron-limited surface oceans
000601930 260__ $$aLondon$$bNature Publishing Group$$c2023
000601930 3367_ $$2DRIVER$$aarticle
000601930 3367_ $$2DataCite$$aOutput Types/Journal article
000601930 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1725358504_1703675
000601930 3367_ $$2BibTeX$$aARTICLE
000601930 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000601930 3367_ $$00$$2EndNote$$aJournal Article
000601930 520__ $$aMicrobial rhodopsins are photoreceptor proteins that convert light into biological signals or energy. Proteins of the xanthorhodopsin family are common in eukaryotic photosynthetic plankton including diatoms. However, their biological role in these organisms remains elusive. Here we report on a xanthorhodopsin variant (FcR1) isolated from the polar diatom Fragilariopsis cylindrus. Applying a combination of biophysical, biochemical and reverse genetics approaches, we demonstrate that FcR1 is a plastid-localized proton pump which binds the chromophore retinal and is activated by green light. Enhanced growth of a Thalassiora pseudonana gain-of-function mutant expressing FcR1 under iron limitation shows that the xanthorhodopsin proton pump supports growth when chlorophyll-based photosynthesis is iron-limited. The abundance of xanthorhodopsin transcripts in natural diatom communities of the surface oceans is anticorrelated with the availability of dissolved iron. Thus, we propose that these proton pumps convey a fitness advantage in regions where phytoplankton growth is limited by the availability of dissolved iron.
000601930 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000601930 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000601930 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000601930 7001_ $$0P:(DE-HGF)0$$aDeng, Longji$$b1
000601930 7001_ $$0P:(DE-HGF)0$$aGao, Shiqiang$$b2
000601930 7001_ $$0P:(DE-HGF)0$$aToseland, Andrew$$b3
000601930 7001_ $$0P:(DE-HGF)0$$aBachy, Charles$$b4
000601930 7001_ $$0P:(DE-HGF)0$$aZhang, Chong$$b5
000601930 7001_ $$0P:(DE-HGF)0$$aKirkham, Amy$$b6
000601930 7001_ $$0P:(DE-HGF)0$$aHopes, Amanda$$b7
000601930 7001_ $$0P:(DE-HGF)0$$aUtting, Robert$$b8
000601930 7001_ $$0P:(DE-HGF)0$$aJoest, Eike F.$$b9
000601930 7001_ $$0P:(DE-HGF)0$$aTagliabue, Alessandro$$b10
000601930 7001_ $$0P:(DE-H253)PIP1023783$$aLoew, Christian$$b11
000601930 7001_ $$0P:(DE-HGF)0$$aWorden, Alexandra Z.$$b12
000601930 7001_ $$0P:(DE-HGF)0$$aNagel, Georg$$b13
000601930 7001_ $$0P:(DE-HGF)0$$aMock, Thomas$$b14$$eCorresponding author
000601930 773__ $$0PERI:(DE-600)2845610-5$$a10.1038/s41564-023-01498-5$$gVol. 8, no. 11, p. 2050 - 2066$$n11$$p2050 - 2066$$tNature microbiology$$v8$$x2058-5276$$y2023
000601930 8564_ $$uhttps://bib-pubdb1.desy.de/record/601930/files/s41564-023-01498-5.pdf$$yOpenAccess
000601930 8564_ $$uhttps://bib-pubdb1.desy.de/record/601930/files/s41564-023-01498-5.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000601930 909CO $$ooai:bib-pubdb1.desy.de:601930$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000601930 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1081588$$aCentre for Structural Systems Biology$$b0$$kCSSB
000601930 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1023783$$aCentre for Structural Systems Biology$$b11$$kCSSB
000601930 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000601930 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
000601930 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
000601930 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-27
000601930 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-27
000601930 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000601930 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-10-27
000601930 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT MICROBIOL : 2022$$d2023-10-27
000601930 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
000601930 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2023-10-27$$wger
000601930 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bNAT MICROBIOL : 2022$$d2023-10-27
000601930 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
000601930 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000601930 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
000601930 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
000601930 9201_ $$0I:(DE-H253)CSSB-EMBL-CL-20210806$$kCSSB-EMBL-CL$$lCSSB-EMBL-CL$$x0
000601930 980__ $$ajournal
000601930 980__ $$aVDB
000601930 980__ $$aUNRESTRICTED
000601930 980__ $$aI:(DE-H253)CSSB-EMBL-CL-20210806
000601930 9801_ $$aFullTexts