001     601642
005     20250724132718.0
024 7 _ |a 10.1083/jcb.202304106
|2 doi
024 7 _ |a 0021-9525
|2 ISSN
024 7 _ |a 0095-9901
|2 ISSN
024 7 _ |a 1540-8140
|2 ISSN
024 7 _ |a 2327-7440
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2024-00335
|2 datacite_doi
024 7 _ |a altmetric:151998822
|2 altmetric
024 7 _ |a pmid:37516914
|2 pmid
024 7 _ |a WOS:001068239900001
|2 WOS
024 7 _ |a openalex:W4385387009
|2 openalex
037 _ _ |a PUBDB-2024-00335
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Lewis, Hannah C.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a HSV-1 exploits host heterochromatin for nuclear egress
260 _ _ |a New York, NY
|c 2023
|b Rockefeller Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1724927784_3329676
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Herpes simplex virus (HSV-1) progeny form in the nucleus and exit to successfully infect other cells. Newly formed capsids navigate complex chromatin architecture to reach the inner nuclear membrane (INM) and egress. Here, we demonstrate by transmission electron microscopy (TEM) that HSV-1 capsids traverse heterochromatin associated with trimethylation on histone H3 lysine 27 (H3K27me3) and the histone variant macroH2A1. Through chromatin profiling during infection, we revealed global redistribution of these marks whereby massive host genomic regions bound by macroH2A1 and H3K27me3 correlate with decreased host transcription in active compartments. We found that the loss of these markers resulted in significantly lower viral titers but did not impact viral genome or protein accumulation. Strikingly, we discovered that loss of macroH2A1 or H3K27me3 resulted in nuclear trapping of capsids. Finally, by live-capsid tracking, we quantified this decreased capsid movement. Thus, our work demonstrates that HSV-1 takes advantage of the dynamic nature of host heterochromatin formation during infection for efficient nuclear egress.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
536 _ _ |a DFG project 390874280 - EXC 2155: RESIST - Resolving Infection Susceptibility (390874280)
|0 G:(GEPRIS)390874280
|c 390874280
|x 1
536 _ _ |a DFG project 443644894 - FOR 5200: Disrupt - Evade - Exploit: Steuerung der Genexpression und Wirtsantwort durch DNA Viren (DEEP-DV) (443644894)
|0 G:(GEPRIS)443644894
|c 443644894
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Kelnhofer-Millevolte, Laurel E.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Brinkley, Mia R.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Arbach, Hannah E.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Arnold, Edward A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Sanders, Saskia
|0 P:(DE-H253)PIP1093777
|b 5
700 1 _ |a Bosse, Jens Bernhard
|0 P:(DE-H253)PIP1082972
|b 6
700 1 _ |a Ramachandran, Srinivas
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
700 1 _ |a Avgousti, Daphne C.
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 _ _ |a 10.1083/jcb.202304106
|g Vol. 222, no. 9, p. e202304106
|0 PERI:(DE-600)1421310-2
|n 9
|p e202304106
|t The journal of cell biology
|v 222
|y 2023
|x 0021-9525
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/601642/files/jcb_202304106.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/601642/files/jcb_202304106.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:601642
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 5
|6 P:(DE-H253)PIP1093777
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1093777
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 6
|6 P:(DE-H253)PIP1082972
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1082972
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CELL BIOL : 2022
|d 2023-10-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J CELL BIOL : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
920 1 _ |0 I:(DE-H253)CSSB-MHH-JB-20210520
|k CSSB-MHH-JB
|l CSSB-MHH-JB
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)CSSB-MHH-JB-20210520
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21