001     601641
005     20250724132717.0
024 7 _ |a 10.1038/s41564-023-01433-8
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-00334
|2 datacite_doi
024 7 _ |a altmetric:152633623
|2 altmetric
024 7 _ |a pmid:37550507
|2 pmid
024 7 _ |a WOS:001043678400003
|2 WOS
024 7 _ |a openalex:W4385638394
|2 openalex
037 _ _ |a PUBDB-2024-00334
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Bogdanow, Boris
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Spatially resolved protein map of intact human cytomegalovirus virions
260 _ _ |a London
|c 2023
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1724927460_3329042
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Herpesviruses assemble large enveloped particles that are difficult to characterize structurally due to their size, fragility and complex multilayered proteome with partially amorphous nature. Here we used crosslinking mass spectrometry and quantitative proteomics to derive a spatially resolved interactome map of intact human cytomegalovirus virions. This enabled the de novo allocation of 32 viral proteins into four spatially resolved virion layers, each organized by a dominant viral scaffold protein. The viral protein UL32 engages with all layers in an N-to-C-terminal radial orientation, bridging nucleocapsid to viral envelope. We observed the layer-specific incorporation of 82 host proteins, of which 39 are selectively recruited. We uncovered how UL32, by recruitment of PP-1 phosphatase, antagonizes binding to 14-3-3 proteins. This mechanism assures effective viral biogenesis, suggesting a perturbing role of UL32-14-3-3 interaction. Finally, we integrated these data into a coarse-grained model to provide global insights into the native configuration of virus and host protein interactions inside herpesvirions.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
536 _ _ |a DFG project 390874280 - EXC 2155: RESIST - Resolving Infection Susceptibility (390874280)
|0 G:(GEPRIS)390874280
|c 390874280
|x 1
536 _ _ |a SFB 958 A04 - Raumzeitliches Modell neuronaler Signaltransduktion und ihrer Regulation durch Präsynaptische Membrangerüste (A04) (202189827)
|0 G:(GEPRIS)202189827
|c 202189827
|x 2
536 _ _ |a SFB 1114 C03/Erg. - Anomale Michaelis-Menten-Kinetik in dichtgepackter, heterogener Umgebung (C03/Erg.) (355497160)
|0 G:(GEPRIS)355497160
|c 355497160
|x 3
588 _ _ |a Dataset connected to DataCite
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Gruska, Iris
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mühlberg, Lars
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Protze, Jonas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hohensee, Svea
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Vetter, Barbara
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Bosse, Jens B.
|0 P:(DE-H253)PIP1082972
|b 6
700 1 _ |a Lehmann, Martin
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Sadeghi, Mohsen
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Wiebusch, Lüder
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Liu, Fan
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
773 _ _ |a 10.1038/s41564-023-01433-8
|g Vol. 8, no. 9, p. 1732 - 1747
|0 PERI:(DE-600)2845610-5
|n 9
|p 1732 - 1747
|t Nature microbiology
|v 8
|y 2023
|x 2058-5276
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/601641/files/s41564-023-01433-8.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/601641/files/s41564-023-01433-8.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:601641
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 6
|6 P:(DE-H253)PIP1082972
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1082972
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-10-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT MICROBIOL : 2022
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2023-10-27
|w ger
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b NAT MICROBIOL : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
920 1 _ |0 I:(DE-H253)CSSB-MHH-JB-20210520
|k CSSB-MHH-JB
|l CSSB-MHH-JB
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)CSSB-MHH-JB-20210520
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21