000601641 001__ 601641
000601641 005__ 20250724132717.0
000601641 0247_ $$2doi$$a10.1038/s41564-023-01433-8
000601641 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-00334
000601641 0247_ $$2altmetric$$aaltmetric:152633623
000601641 0247_ $$2pmid$$apmid:37550507
000601641 0247_ $$2WOS$$aWOS:001043678400003
000601641 0247_ $$2openalex$$aopenalex:W4385638394
000601641 037__ $$aPUBDB-2024-00334
000601641 041__ $$aEnglish
000601641 082__ $$a570
000601641 1001_ $$0P:(DE-HGF)0$$aBogdanow, Boris$$b0$$eCorresponding author
000601641 245__ $$aSpatially resolved protein map of intact human cytomegalovirus virions
000601641 260__ $$aLondon$$bNature Publishing Group$$c2023
000601641 3367_ $$2DRIVER$$aarticle
000601641 3367_ $$2DataCite$$aOutput Types/Journal article
000601641 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1724927460_3329042
000601641 3367_ $$2BibTeX$$aARTICLE
000601641 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000601641 3367_ $$00$$2EndNote$$aJournal Article
000601641 520__ $$aHerpesviruses assemble large enveloped particles that are difficult to characterize structurally due to their size, fragility and complex multilayered proteome with partially amorphous nature. Here we used crosslinking mass spectrometry and quantitative proteomics to derive a spatially resolved interactome map of intact human cytomegalovirus virions. This enabled the de novo allocation of 32 viral proteins into four spatially resolved virion layers, each organized by a dominant viral scaffold protein. The viral protein UL32 engages with all layers in an N-to-C-terminal radial orientation, bridging nucleocapsid to viral envelope. We observed the layer-specific incorporation of 82 host proteins, of which 39 are selectively recruited. We uncovered how UL32, by recruitment of PP-1 phosphatase, antagonizes binding to 14-3-3 proteins. This mechanism assures effective viral biogenesis, suggesting a perturbing role of UL32-14-3-3 interaction. Finally, we integrated these data into a coarse-grained model to provide global insights into the native configuration of virus and host protein interactions inside herpesvirions.
000601641 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000601641 536__ $$0G:(GEPRIS)390874280$$aDFG project 390874280 - EXC 2155: RESIST - Resolving Infection Susceptibility (390874280)$$c390874280$$x1
000601641 536__ $$0G:(GEPRIS)202189827$$aSFB 958 A04 - Raumzeitliches Modell neuronaler Signaltransduktion und ihrer Regulation durch Präsynaptische Membrangerüste (A04) (202189827)$$c202189827$$x2
000601641 536__ $$0G:(GEPRIS)355497160$$aSFB 1114 C03/Erg. - Anomale Michaelis-Menten-Kinetik in dichtgepackter, heterogener Umgebung (C03/Erg.) (355497160)$$c355497160$$x3
000601641 588__ $$aDataset connected to DataCite
000601641 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000601641 7001_ $$0P:(DE-HGF)0$$aGruska, Iris$$b1
000601641 7001_ $$0P:(DE-HGF)0$$aMühlberg, Lars$$b2
000601641 7001_ $$0P:(DE-HGF)0$$aProtze, Jonas$$b3
000601641 7001_ $$0P:(DE-HGF)0$$aHohensee, Svea$$b4
000601641 7001_ $$0P:(DE-HGF)0$$aVetter, Barbara$$b5
000601641 7001_ $$0P:(DE-H253)PIP1082972$$aBosse, Jens B.$$b6
000601641 7001_ $$0P:(DE-HGF)0$$aLehmann, Martin$$b7
000601641 7001_ $$0P:(DE-HGF)0$$aSadeghi, Mohsen$$b8
000601641 7001_ $$0P:(DE-HGF)0$$aWiebusch, Lüder$$b9
000601641 7001_ $$0P:(DE-HGF)0$$aLiu, Fan$$b10$$eCorresponding author
000601641 773__ $$0PERI:(DE-600)2845610-5$$a10.1038/s41564-023-01433-8$$gVol. 8, no. 9, p. 1732 - 1747$$n9$$p1732 - 1747$$tNature microbiology$$v8$$x2058-5276$$y2023
000601641 8564_ $$uhttps://bib-pubdb1.desy.de/record/601641/files/s41564-023-01433-8.pdf$$yOpenAccess
000601641 8564_ $$uhttps://bib-pubdb1.desy.de/record/601641/files/s41564-023-01433-8.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000601641 909CO $$ooai:bib-pubdb1.desy.de:601641$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000601641 9101_ $$0I:(DE-H253)_CSSB-20140311$$6P:(DE-H253)PIP1082972$$aCentre for Structural Systems Biology$$b6$$kCSSB
000601641 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1082972$$aExternal Institute$$b6$$kExtern
000601641 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000601641 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
000601641 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
000601641 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-27
000601641 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-27
000601641 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000601641 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-10-27
000601641 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT MICROBIOL : 2022$$d2023-10-27
000601641 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
000601641 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2023-10-27$$wger
000601641 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bNAT MICROBIOL : 2022$$d2023-10-27
000601641 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
000601641 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000601641 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
000601641 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
000601641 9201_ $$0I:(DE-H253)CSSB-MHH-JB-20210520$$kCSSB-MHH-JB$$lCSSB-MHH-JB$$x0
000601641 980__ $$ajournal
000601641 980__ $$aVDB
000601641 980__ $$aUNRESTRICTED
000601641 980__ $$aI:(DE-H253)CSSB-MHH-JB-20210520
000601641 9801_ $$aFullTexts