000601580 001__ 601580 000601580 005__ 20250731163833.0 000601580 0247_ $$2doi$$a10.1038/s41566-023-01367-x 000601580 0247_ $$2ISSN$$a1749-4885 000601580 0247_ $$2ISSN$$a1749-4893 000601580 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-00289 000601580 0247_ $$2arXiv$$aarXiv:2301.13132 000601580 0247_ $$2altmetric$$aaltmetric:141954041 000601580 0247_ $$2WOS$$aWOS:001142522600001 000601580 0247_ $$2openalex$$aopenalex:W4390880458 000601580 037__ $$aPUBDB-2024-00289 000601580 041__ $$aEnglish 000601580 082__ $$a530 000601580 088__ $$2arXiv$$aarXiv:2301.13132 000601580 1001_ $$0P:(DE-H253)PIP1101456$$aUlanov, Alexander$$b0 000601580 245__ $$aSynthetic reflection self-injection-locked microcombs 000601580 260__ $$aLondon [u.a.]$$bNature Publ. Group$$c2024 000601580 3367_ $$2DRIVER$$aarticle 000601580 3367_ $$2DataCite$$aOutput Types/Journal article 000601580 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1711368724_2270386 000601580 3367_ $$2BibTeX$$aARTICLE 000601580 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000601580 3367_ $$00$$2EndNote$$aJournal Article 000601580 520__ $$aLaser-driven microresonators have enabled chip-integrated light sources with unique properties, including the self-organized formation of ultrashort soliton pulses and frequency combs (microcombs). While poised to impact major photonic applications, such as spectroscopy, sensing and optical data processing, microcombs still necessitate complex scientific equipment to achieve and maintain suitable single-pulse operation. Here, to address this challenge, we demonstrate microresonators with programmable synthetic reflection providing an injection-feedback to the driving laser. When designed appropriately, the synthetic reflection enables robust access to self-injection-locked microcombs operating exclusively in the single-soliton regime and with low-threshold power. These results provide a route to easily-operable microcombs for portable sensors, autonomous navigation, or extreme-bandwidth data processing and represent a novel paradigm that can be generalized to other integrated photonic systems. 000601580 536__ $$0G:(DE-HGF)POF4-631$$a631 - Matter – Dynamics, Mechanisms and Control (POF4-631)$$cPOF4-631$$fPOF IV$$x0 000601580 536__ $$0G:(EU-Grant)853564$$aSTARCHIP - Microphotonics-based frequency combs for habitable exoplanet detection (853564)$$c853564$$fERC-2019-STG$$x1 000601580 536__ $$0G:(EU-Grant)965124$$aFEMTOCHIP - FEMTOSECOND LASER ON A CHIP (965124)$$c965124$$fH2020-FETOPEN-2018-2019-2020-01$$x2 000601580 536__ $$0G:(DE-HGF)2019_VH-NG-1404$$aVH-NG-1404 - Ultra-fast nonlinear microphotonics (G:(DE-HGF)2019_VH-NG-1404)$$cG:(DE-HGF)2019_VH-NG-1404$$x3 000601580 542__ $$2Crossref$$i2024-01-15$$uhttps://creativecommons.org/licenses/by/4.0 000601580 542__ $$2Crossref$$i2024-01-15$$uhttps://creativecommons.org/licenses/by/4.0 000601580 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de 000601580 693__ $$0EXP:(DE-H253)CFEL-Exp-20150101$$5EXP:(DE-H253)CFEL-Exp-20150101$$eExperiments at CFEL$$x0 000601580 7001_ $$0P:(DE-H253)PIP1094154$$aWildi, Thibault$$b1 000601580 7001_ $$0P:(DE-HGF)0$$aPavlov, Nikolay G.$$b2 000601580 7001_ $$0P:(DE-HGF)0$$aJost, John D.$$b3 000601580 7001_ $$0P:(DE-HGF)0$$aKarpov, Maxim$$b4 000601580 7001_ $$0P:(DE-H253)PIP1092814$$aHerr, Tobias$$b5$$eCorresponding author$$udesy 000601580 77318 $$2Crossref$$3journal-article$$a10.1038/s41566-023-01367-x$$bSpringer Science and Business Media LLC$$d2024-01-15$$n3$$p294-299$$tNature Photonics$$v18$$x1749-4885$$y2024 000601580 773__ $$0PERI:(DE-600)2264673-5$$a10.1038/s41566-023-01367-x$$gVol. 18, no. 3, p. 294 - 299$$n3$$p294-299$$tNature photonics$$v18$$x1749-4885$$y2024 000601580 7870_ $$0PUBDB-2023-00490$$aUlanov, Alexander et.al.$$d2023$$iIsParent$$rarXiv:2301.13132$$tSynthetic-reflection self-injection-locked microcombs 000601580 8564_ $$uhttps://bib-pubdb1.desy.de/record/601580/files/s41566-023-01367-x.first.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510 000601580 8564_ $$uhttps://bib-pubdb1.desy.de/record/601580/files/s41566-023-01367-x.pdf$$yRestricted$$zStatID:(DE-HGF)0599 000601580 8564_ $$uhttps://bib-pubdb1.desy.de/record/601580/files/s41566-023-01367-x.first.pdf?subformat=pdfa$$xpdfa$$yOpenAccess$$zStatID:(DE-HGF)0510 000601580 8564_ $$uhttps://bib-pubdb1.desy.de/record/601580/files/s41566-023-01367-x.pdf?subformat=pdfa$$xpdfa$$yRestricted$$zStatID:(DE-HGF)0599 000601580 8767_ $$92023-12-21$$d2024-01-18$$eHybrid-OA$$jPublish and Read$$lSpringerNature$$zNature Portfolio, 2023 invoice 000601580 8767_ $$d2025-07-30$$eHybrid-OA$$jStorniert$$zDFG OAPK (Projekt) verrechnet durch V3 000601580 8767_ $$d2025-07-30$$eHybrid-OA$$jZahlung erfolgt$$zDFG OAPK (Projekt) verrechnet durch V3 000601580 909CO $$ooai:bib-pubdb1.desy.de:601580$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire 000601580 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1101456$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY 000601580 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1101456$$aCentre for Free-Electron Laser Science$$b0$$kCFEL 000601580 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1094154$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY 000601580 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1094154$$aCentre for Free-Electron Laser Science$$b1$$kCFEL 000601580 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1092814$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY 000601580 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1092814$$aCentre for Free-Electron Laser Science$$b5$$kCFEL 000601580 9131_ $$0G:(DE-HGF)POF4-631$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMatter – Dynamics, Mechanisms and Control$$x0 000601580 9141_ $$y2024 000601580 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25 000601580 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000601580 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25 000601580 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2023-10-25$$wger 000601580 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000601580 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-07$$wger 000601580 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07 000601580 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07 000601580 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-07 000601580 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-07 000601580 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07 000601580 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT PHOTONICS : 2022$$d2025-01-07 000601580 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07 000601580 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-07 000601580 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-07 000601580 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bNAT PHOTONICS : 2022$$d2025-01-07 000601580 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 000601580 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding 000601580 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten 000601580 915pc $$0PC:(DE-HGF)0114$$2APC$$aGerman academic consortium, administered by Max Planck Digital Library: Springer Nature 2021 000601580 9201_ $$0I:(DE-H253)FS-CFEL-2-UMP-20201209$$kFS-CFEL-2-UMP$$lFS-CFEL-2-UMP$$x0 000601580 980__ $$ajournal 000601580 980__ $$aVDB 000601580 980__ $$aUNRESTRICTED 000601580 980__ $$aI:(DE-H253)FS-CFEL-2-UMP-20201209 000601580 980__ $$aAPC 000601580 9801_ $$aAPC 000601580 9801_ $$aFullTexts 000601580 999C5 $$1KJ Vahala$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature01939$$p839 -$$tNature$$uVahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).$$v424$$y2003 000601580 999C5 $$1P Del’Haye$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature06401$$p1214 -$$tNature$$uDel’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).$$v450$$y2007 000601580 999C5 $$1NLB Sayson$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-019-0485-4$$p701 -$$tNat. Photon.$$uSayson, N. L. B. et al. Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators. Nat. Photon. 13, 701–706 (2019).$$v13$$y2019 000601580 999C5 $$1T Herr$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphoton.2013.343$$p145 -$$tNat. Photon.$$uHerr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).$$v8$$y2014 000601580 999C5 $$1TJ Kippenberg$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aan8083$$peaan8083 -$$tScience$$uKippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).$$v361$$y2018 000601580 999C5 $$1SA Diddams$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aay3676$$peaay3676 -$$tScience$$uDiddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).$$v369$$y2020 000601580 999C5 $$1François Leo$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphoton.2010.120$$p471 -$$tNat. Photon.$$uLeo, François et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photon. 4, 471–476 (2010).$$v4$$y2010 000601580 999C5 $$1V Brasch$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aad4811$$p357 -$$tScience$$uBrasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).$$v351$$y2016 000601580 999C5 $$1AL Gaeta$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-019-0358-x$$p158 -$$tNat. Photon.$$uGaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158–169 (2019).$$v13$$y2019 000601580 999C5 $$1P Marin-Palomo$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature22387$$p274 -$$tNature$$uMarin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).$$v546$$y2017 000601580 999C5 $$1AA Jørgensen$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-022-01082-z$$p798 -$$tNat. Photon.$$uJørgensen, A. A. et al. Petabit-per-second data transmission using a chip-scale microcomb ring resonator source. Nat. Photon. 16, 798–802 (2022).$$v16$$y2022 000601580 999C5 $$1P Trocha$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aao3924$$p887 -$$tScience$$uTrocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).$$v359$$y2018 000601580 999C5 $$1M-G Suh$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aao1968$$p884 -$$tScience$$uSuh, M.-G. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884–887 (2018).$$v359$$y2018 000601580 999C5 $$1M-G Suh$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-018-0312-3$$p25 -$$tNat. Photon.$$uSuh, M.-G. et al. Searching for exoplanets using a microresonator astrocomb. Nat. Photon. 13, 25–30 (2019).$$v13$$y2019 000601580 999C5 $$1E Obrzud$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-018-0309-y$$p31 -$$tNat. Photon.$$uObrzud, E. et al. A microphotonic astrocomb. Nat. Photon. 13, 31–35 (2019).$$v13$$y2019 000601580 999C5 $$1M-G Suh$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aah6516$$p600 -$$tScience$$uSuh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).$$v354$$y2016 000601580 999C5 $$1W Liang$$2Crossref$$uLiang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).$$y2015 000601580 999C5 $$1E Lucas$$2Crossref$$uLucas, E. et al. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator. Nat. Commun. 11, 374 (2020).$$y2020 000601580 999C5 $$1J Feldmann$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-020-03070-1$$p52 -$$tNature$$uFeldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).$$v589$$y2021 000601580 999C5 $$1X Xu$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-020-03063-0$$p44 -$$tNature$$uXu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).$$v589$$y2021 000601580 999C5 $$1B Bai$$2Crossref$$uBai, B. et al. Microcomb-based integrated photonic processing unit. Nat. Commun. 14, 66 (2023).$$y2023 000601580 999C5 $$1H Guo$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys3893$$p94 -$$tNat. Phys.$$uGuo, H. et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13, 94–102 (2017).$$v13$$y2017 000601580 999C5 $$1C Bao$$2Crossref$$9-- missing cx lookup --$$a10.1364/OPTICA.4.001011$$p1011 -$$tOptica$$uBao, C. et al. Spatial mode-interaction induced single soliton generation in microresonators. Optica 4, 1011–1015 (2017).$$v4$$y2017 000601580 999C5 $$1E Obrzud$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphoton.2017.140$$p600 -$$tNat. Photon.$$uObrzud, E., Lecomte, S. & Herr, T. Temporal solitons in microresonators driven by optical pulses. Nat. Photon. 11, 600–607 (2017).$$v11$$y2017 000601580 999C5 $$1M Rowley$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-022-04957-x$$p303 -$$tNature$$uRowley, M. et al. Self-emergence of robust solitons in a microcavity. Nature 608, 303–309 (2022).$$v608$$y2022 000601580 999C5 $$1S Zhang$$2Crossref$$9-- missing cx lookup --$$a10.1364/OPTICA.6.000206$$p206 -$$tOptica$$uZhang, S. et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser. Optica 6, 206–212 (2019).$$v6$$y2019 000601580 999C5 $$1Q Li$$2Crossref$$9-- missing cx lookup --$$a10.1364/OPTICA.4.000193$$p193 -$$tOptica$$uLi, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4, 193–203 (2017).$$v4$$y2017 000601580 999C5 $$1H Weng$$2Crossref$$9-- missing cx lookup --$$a10.1063/5.0089036$$p066103 -$$tAPL Photon.$$uWeng, H. et al. Dual-mode microresonators as straightforward access to octave-spanning dissipative Kerr solitons. APL Photon. 7, 066103 (2022).$$v7$$y2022 000601580 999C5 $$1T Wildi$$2Crossref$$9-- missing cx lookup --$$a10.1364/OL.44.004447$$p4447 -$$tOpt. Lett.$$uWildi, T., Brasch, V., Liu, J., Kippenberg, T. J. & Herr, T. Thermally stable access to microresonator solitons via slow pump modulation. Opt. Lett. 44, 4447–4450 (2019).$$v44$$y2019 000601580 999C5 $$1Y He$$2Crossref$$9-- missing cx lookup --$$a10.1364/OPTICA.6.001138$$p1138 -$$tOptica$$uHe, Y. et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica 6, 1138–1144 (2019).$$v6$$y2019 000601580 999C5 $$1Y Bai$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.126.063901$$p063901 -$$tPhys. Rev. Lett.$$uBai, Y. et al. Brillouin–Kerr soliton frequency combs in an optical microresonator. Phys. Rev. Lett. 126, 063901 (2021).$$v126$$y2021 000601580 999C5 $$1VV Vasil’ev$$2Crossref$$9-- missing cx lookup --$$a10.1070/QE1996v026n08ABEH000747$$p657 -$$tQuantum Electron.$$uVasil’ev, V. V. et al. High-coherence diode laser with optical feedback via a microcavity with ’whispering gallery’ modes. Quantum Electron. 26, 657 (1996).$$v26$$y1996 000601580 999C5 $$1W Liang$$2Crossref$$9-- missing cx lookup --$$a10.1364/OL.35.002822$$p2822 -$$tOpt. Lett.$$uLiang, W. et al. Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser. Opt. Lett. 35, 2822–2824 (2010).$$v35$$y2010 000601580 999C5 $$1NM Kondratiev$$2Crossref$$9-- missing cx lookup --$$a10.1364/OE.25.028167$$p28167 -$$tOpt. Express$$uKondratiev, N. M. et al. Self-injection locking of a laser diode to a high-Q WGM microresonator. Opt. Express 25, 28167 (2017).$$v25$$y2017 000601580 999C5 $$1W Jin$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-021-00761-7$$p346 -$$tNat. Photon.$$uJin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photon. 15, 346–353 (2021).$$v15$$y2021 000601580 999C5 $$1NG Pavlov$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-018-0277-2$$p694 -$$tNat. Photon.$$uPavlov, N. G. et al. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes. Nat. Photon. 12, 694–698 (2018).$$v12$$y2018 000601580 999C5 $$1B Stern$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-018-0598-9$$p401 -$$tNature$$uStern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).$$v562$$y2018 000601580 999C5 $$1AS Raja$$2Crossref$$uRaja, A. S. et al. Electrically pumped photonic integrated soliton microcomb. Nat. Commun. 10, 680 (2019).$$y2019 000601580 999C5 $$1B Shen$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-020-2358-x$$p365 -$$tNature$$uShen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).$$v582$$y2020 000601580 999C5 $$1AS Voloshin$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-020-20196-y$$tNat. Commun.$$uVoloshin, A. S. et al. Dynamics of soliton self-injection locking in optical microresonators. Nat. Commun. 12, 235 (2021).$$v12$$y2021 000601580 999C5 $$1C Xiang$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.abh2076$$p99 -$$tScience$$uXiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021).$$v373$$y2021 000601580 999C5 $$1ML Gorodetsky$$2Crossref$$9-- missing cx lookup --$$a10.1364/JOSAB.17.001051$$p1051 -$$tJ. Opt. Soc. Am. B$$uGorodetsky, M. L., Pryamikov, A. D. & Ilchenko, V. S. Rayleigh scattering in high-Q microspheres. J. Opt. Soc. Am. B 17, 1051–1057 (2000).$$v17$$y2000 000601580 999C5 $$1A Arbabi$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3633111$$p091105 -$$tAppl. Phys. Lett.$$uArbabi, A., Kang, Y. M., Lu, C.-Y., Chow, E. & Goddard, L. L. Realization of a narrowband single wavelength microring mirror. Appl. Phys. Lett. 99, 091105 (2011).$$v99$$y2011 000601580 999C5 $$1S-P Yu$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-021-00800-3$$p461 -$$tNat. Photon.$$uYu, S.-P. et al. Spontaneous pulse formation in edgeless photonic crystal resonators. Nat. Photon. 15, 461–467 (2021).$$v15$$y2021 000601580 999C5 $$1X Lu$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-021-00912-w$$p66 -$$tNat. Photon.$$uLu, X., McClung, A. & Srinivasan, K. High-Q slow light and its localization in a photonic crystal microring. Nat. Photon. 16, 66–71 (2022).$$v16$$y2022 000601580 999C5 $$1JA Black$$2Crossref$$9-- missing cx lookup --$$a10.1364/OPTICA.469210$$p1183 -$$tOptica$$uBlack, J. A. et al. Optical-parametric oscillation in photonic-crystal ring resonators. Optica 9, 1183–1189 (2022).$$v9$$y2022 000601580 999C5 $$1KY Yang$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-022-35446-4$$p7862 -$$tNat. Commun.$$uYang, K. Y. et al. Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs. Nat. Commun. 13, 7862 (2022).$$v13$$y2022 000601580 999C5 $$1E Lucas$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-023-01252-7$$p943 -$$tNat. Photon.$$uLucas, E., Yu, S.-P., Briles, T. C., Carlson, D. R. & Papp, S. B. Tailoring microcombs with inverse-designed, meta-dispersion microresonators. Nat. Photon. 17, 943–950 (2023).$$v17$$y2023 000601580 999C5 $$1T Herr$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphoton.2012.127$$p480 -$$tNat. Photon.$$uHerr, T. et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat. Photon. 6, 480–487 (2012).$$v6$$y2012 000601580 999C5 $$1ÓB Helgason$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-023-01280-3$$p992 -$$tNat. Photon.$$uHelgason, Ó. B. et al. Surpassing the nonlinear conversion efficiency of soliton microcombs. Nat. Photon. 17, 992–999 (2023).$$v17$$y2023 000601580 999C5 $$1C Godey$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.89.063814$$p063814 -$$tPhys. Rev. A$$uGodey, C., Balakireva, I. V., Coillet, A. & Chembo, Y. K. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A 89, 063814 (2014).$$v89$$y2014 000601580 999C5 $$1NM Kondratiev$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.101.013816$$p013816 -$$tPhys. Rev. A$$uKondratiev, N. M. & Lobanov, V. E. Modulational instability and frequency combs in whispering-gallery-mode microresonators with backscattering. Phys. Rev. A 101, 013816 (2020).$$v101$$y2020 000601580 999C5 $$2Crossref$$uTan, T. et al. Gain-assisted chiral soliton microcombs. Preprint at https://arxiv.org/abs/2008.12510 (2020). 000601580 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.54.5707$$uBarashenkov, I. V. & Smirnov, Y. S. Existence and stability chart for the ac-driven, damped nonlinear Schrödinger solitons. Phys. Rev. E 54, 5707–5725 (1996). 000601580 999C5 $$1IV Balakireva$$2Crossref$$9-- missing cx lookup --$$a10.1098/rsta.2017.0381$$p20170381 -$$tPhilos. Trans. R. Soc. A$$uBalakireva, I. V. & Chembo, Y. K. A taxonomy of optical dissipative structures in whispering-gallery mode resonators with Kerr nonlinearity. Philos. Trans. R. Soc. A 376, 20170381 (2018).$$v376$$y2018 000601580 999C5 $$1P Del’Haye$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphoton.2009.138$$p529 -$$tNat. Photon.$$uDel’Haye, P., Arcizet, O., Gorodetsky, M. L., Holzwarth, R. & Kippenberg, T. J. Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nat. Photon. 3, 529–533 (2009).$$v3$$y2009 000601580 999C5 $$1P Del’Haye$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.109.263901$$p263901 -$$tPhys. Rev. Lett.$$uDel’Haye, P., Papp, S. B. & Diddams, S. A. Hybrid electro-optically modulated microcombs. Phys. Rev. Lett. 109, 263901 (2012).$$v109$$y2012 000601580 999C5 $$1DA Chermoshentsev$$2Crossref$$9-- missing cx lookup --$$a10.1364/OE.454687$$p17094 -$$tOpt. Express$$uChermoshentsev, D. A. et al. Dual-laser self-injection locking to an integrated microresonator. Opt. Express 30, 17094 (2022).$$v30$$y2022 000601580 999C5 $$1X Xue$$2Crossref$$9-- missing cx lookup --$$a10.1515/nanoph-2016-0016$$p244 -$$tNanophotonics$$uXue, X., Qi, M. & Weiner, A. M. Normal-dispersion microresonator kerr frequency combs. Nanophotonics 5, 244–262 (2016).$$v5$$y2016 000601580 999C5 $$1G Lihachev$$2Crossref$$uLihachev, G. et al. Platicon microcomb generation using laser self-injection locking. Nat. Commun. 13, 1771 (2022).$$y2022 000601580 999C5 $$1M Corato-Zanarella$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-022-01120-w$$p157 -$$tNat. Photon.$$uCorato-Zanarella, M. et al. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths. Nat. Photon. 17, 157–164 (2023).$$v17$$y2023 000601580 999C5 $$2Crossref$$uLihachev, G. et al. Frequency agile photonic integrated external cavity laser. Preprint at https://arxiv.org/abs/2303.00425 (2023). 000601580 999C5 $$1Y Zhao$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.124.193601$$p193601 -$$tPhys. Rev. Lett.$$uZhao, Y. et al. Near-degenerate quadrature-squeezed vacuum generation on a silicon-nitride chip. Phys. Rev. Lett. 124, 193601 (2020).$$v124$$y2020 000601580 999C5 $$1H-H Lu$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-022-31639-z$$p4338 -$$tNat. Commun.$$uLu, H.-H. et al. Bayesian tomography of high-dimensional on-chip biphoton frequency combs with randomized measurements. Nat. Commun. 13, 4338 (2022).$$v13$$y2022 000601580 999C5 $$1YK Chembo$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.82.033801$$p033801 -$$tPhys. Rev. A$$uChembo, Y. K. & Yu, N. Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators. Phys. Rev. A 82, 033801 (2010).$$v82$$y2010 000601580 999C5 $$1T Hansson$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.optcom.2013.09.017$$p134 -$$tOpt. Commun.$$uHansson, T., Modotto, D. & Wabnitz, S. On the numerical simulation of Kerr frequency combs using coupled mode equations. Opt. Commun. 312, 134–136 (2014).$$v312$$y2014