001 | 601560 | ||
005 | 20250724132717.0 | ||
024 | 7 | _ | |a 10.1038/s41467-023-36627-5 |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2024-00269 |2 datacite_doi |
024 | 7 | _ | |a altmetric:143147038 |2 altmetric |
024 | 7 | _ | |a pmid:36869034 |2 pmid |
024 | 7 | _ | |a WOS:001066713800005 |2 WOS |
024 | 7 | _ | |a openalex:W4323042487 |2 openalex |
037 | _ | _ | |a PUBDB-2024-00269 |
041 | _ | _ | |a English |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Ferreira, Josie L. |0 P:(DE-H253)PIP1090868 |b 0 |
245 | _ | _ | |a Variable microtubule architecture in the malaria parasite |
260 | _ | _ | |a [London] |c 2023 |b Nature Publishing Group UK |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1729250448_1212485 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a German Center for Infection Research, DZIF (FH), DFG-FR 2140/10-1 (AMB), DFG research networks SFB 1129, SPP 2332 and grant FR 2140/10-1 (FF), CSSB KIF-002 (TWG and KG), DFG research networks SPP 2225 (TWG) |
520 | _ | _ | |a Microtubules are a ubiquitous eukaryotic cytoskeletal element typically consisting of 13 protofilaments arranged in a hollow cylinder. This arrangement is considered the canonical form and is adopted by most organisms, with rare exceptions. Here, we use in situ electron cryo-tomography and subvolume averaging to analyse the changing microtubule cytoskeleton of Plasmodium falciparum, the causative agent of malaria, throughout its life cycle. Unexpectedly, different parasite forms have distinct microtubule structures coordinated by unique organising centres. In merozoites, the most widely studied form, we observe canonical microtubules. In migrating mosquito forms, the 13 protofilament structure is further reinforced by interrupted luminal helices. Surprisingly, gametocytes contain a wide distribution of microtubule structures ranging from 13 to 18 protofilaments, doublets and triplets. Such a diversity of microtubule structures has not been observed in any other organism to date and is likely evidence of a distinct role in each life cycle form. This data provides a unique view into an unusual microtubule cytoskeleton of a relevant human pathogen. |
536 | _ | _ | |a 899 - ohne Topic (POF4-899) |0 G:(DE-HGF)POF4-899 |c POF4-899 |f POF IV |x 0 |
536 | _ | _ | |a EIPOD4 - EMBL Interdisciplinary Postdoc Programme 4 (847543) |0 G:(EU-Grant)847543 |c 847543 |f H2020-MSCA-COFUND-2018 |x 1 |
588 | _ | _ | |a Dataset connected to DataCite |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Pražák, Vojtěch |0 P:(DE-H253)PIP1085253 |b 1 |
700 | 1 | _ | |a Vasishtan, Daven |0 P:(DE-H253)PIP1085521 |b 2 |
700 | 1 | _ | |a Siggel, Marc |0 P:(DE-H253)PIP1097407 |b 3 |
700 | 1 | _ | |a Hentzschel, Franziska |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Binder, Annika M. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Pietsch, Emma |0 P:(DE-H253)PIP1090898 |b 6 |
700 | 1 | _ | |a Kosinski, Jan |0 P:(DE-H253)PIP1081584 |b 7 |
700 | 1 | _ | |a Frischknecht, Friedrich |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Gilberger, Tim W. |0 P:(DE-H253)PIP1023784 |b 9 |
700 | 1 | _ | |a Gruenewald, Kay |0 P:(DE-H253)PIP1023782 |b 10 |e Corresponding author |
773 | _ | _ | |a 10.1038/s41467-023-36627-5 |g Vol. 14, no. 1, p. 1216 |0 PERI:(DE-600)2553671-0 |n 1 |p 1216 |t Nature Communications |v 14 |y 2023 |x 2041-1723 |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/601560/files/s41467-023-36627-5.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/601560/files/s41467-023-36627-5.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:601560 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 0 |6 P:(DE-H253)PIP1090868 |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 1 |6 P:(DE-H253)PIP1085253 |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 2 |6 P:(DE-H253)PIP1085521 |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 3 |6 P:(DE-H253)PIP1097407 |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 6 |6 P:(DE-H253)PIP1090898 |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 7 |6 P:(DE-H253)PIP1081584 |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 9 |6 P:(DE-H253)PIP1023784 |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 10 |6 P:(DE-H253)PIP1023782 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-05-02T09:09:09Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-08-29 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-29 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-29 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2022 |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-05-02T09:09:09Z |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-29 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT COMMUN : 2022 |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-29 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2023-05-02T09:09:09Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-08-29 |
920 | 1 | _ | |0 I:(DE-H253)CSSB-BNITM-TG-20210520 |k CSSB-BNITM-TG |l CSSB-BNITM-TG |x 0 |
920 | 1 | _ | |0 I:(DE-H253)CSSB-LIV-KG-20220525 |k CSSB-LIV-KG |l CSSB - Leibniz-Institut für Experimentelle Virologie (LIV) - Kay Grünewald |x 1 |
920 | 1 | _ | |0 I:(DE-H253)CSSB-EMBL-JK-20210701 |k CSSB-EMBL-JK |l CSSB-EMBL-JK |x 2 |
920 | 1 | _ | |0 I:(DE-H253)CSSB-CF-CRYO-20210520 |k CSSB-CF-CRYO |l CSSB-CF-CRYO |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)CSSB-BNITM-TG-20210520 |
980 | _ | _ | |a I:(DE-H253)CSSB-LIV-KG-20220525 |
980 | _ | _ | |a I:(DE-H253)CSSB-EMBL-JK-20210701 |
980 | _ | _ | |a I:(DE-H253)CSSB-CF-CRYO-20210520 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|