001     601547
005     20250724132714.0
024 7 _ |a 10.1002/adma.202211814
|2 doi
024 7 _ |a 0935-9648
|2 ISSN
024 7 _ |a 1521-4095
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2024-00256
|2 datacite_doi
024 7 _ |a altmetric:149207338
|2 altmetric
024 7 _ |a 37256585
|2 pmid
024 7 _ |a WOS:001020077000001
|2 WOS
024 7 _ |a openalex:W4378782584
|2 openalex
037 _ _ |a PUBDB-2024-00256
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Wang, Yue
|0 P:(DE-H253)PIP1099920
|b 0
245 _ _ |a Reactive Deposition Versus Strong Electrostatic Adsorption (SEA): A Key to Highly Active Single Atom Co‐Catalysts in Photocatalytic H$_2$ Generation
260 _ _ |a Weinheim
|c 2023
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1706179160_1553070
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In recent years, the use of single atoms (SAs) has become of a rapidly increasing significance in photocatalytic H$_2$ generation; here SA noble metals (mainly Pt SAs) can act as highly effective co-catalysts. The classic strategy to decorate oxide semiconductor surfaces with maximally dispersed SAs relies on “strong electrostatic adsorption” (SEA) of suitable noble metal complexes. In the case of TiO$_2$ – the classic benchmark photocatalyst – SEA calls for adsorption of cationic Pt complexes such as [(NH$_3$)$_4$Pt]$^{2+}$ which then are thermally reacted to surface-bound SAs. While SEA is widely used in literature, in the present work it is shown by a direct comparison that reactive attachment based on the reductive anchoring of SAs, e.g., from hexachloroplatinic(IV) acid (H$_2$PtCl$_6$) leads directly to SAs in a configuration with a significantly higher specific activity than SAs deposited with SEA – and this at a significantly lower Pt loading and without any thermal post-deposition treatments. Overall, the work demonstrates that the reactive deposition strategy is superior to the classic SEA concept as it provides a direct electronically well-connected SA-anchoring and thus leads to highly active single-atom sites in photocatalysis.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P65
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P65-20150101
|6 EXP:(DE-H253)P-P65-20150101
|x 0
700 1 _ |a Qin, Shanshan
|b 1
700 1 _ |a Denisov, Nikita
|b 2
700 1 _ |a Kim, Hyesung
|b 3
700 1 _ |a Bad'ura, Zdeněk
|b 4
700 1 _ |a Sarma, Bidyut Bikash
|0 P:(DE-H253)PIP1094186
|b 5
700 1 _ |a Schmuki, Patrik
|0 P:(DE-H253)PIP1087860
|b 6
|e Corresponding author
773 _ _ |a 10.1002/adma.202211814
|g Vol. 35, no. 32, p. 2211814
|0 PERI:(DE-600)1474949-X
|n 32
|p 2211814
|t Advanced materials
|v 35
|y 2023
|x 0935-9648
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/601547/files/Advanced%20Materials%20-%202023%20-%20Wang%20-%20Reactive%20Deposition%20Versus%20Strong%20Electrostatic%20Adsorption%20%20SEA%20%20%20A%20Key%20to%20Highly%20Active.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/601547/files/Advanced%20Materials%20-%202023%20-%20Wang%20-%20Reactive%20Deposition%20Versus%20Strong%20Electrostatic%20Adsorption%20%20SEA%20%20%20A%20Key%20to%20Highly%20Active.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:601547
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1099920
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1094186
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1087860
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV MATER : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-21
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ADV MATER : 2022
|d 2023-10-21
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21