| Home > Publications database > Reactive Deposition Versus Strong Electrostatic Adsorption (SEA): A Key to Highly Active Single Atom Co‐Catalysts in Photocatalytic H$_2$ Generation > print |
| 001 | 601547 | ||
| 005 | 20250724132714.0 | ||
| 024 | 7 | _ | |a 10.1002/adma.202211814 |2 doi |
| 024 | 7 | _ | |a 0935-9648 |2 ISSN |
| 024 | 7 | _ | |a 1521-4095 |2 ISSN |
| 024 | 7 | _ | |a 10.3204/PUBDB-2024-00256 |2 datacite_doi |
| 024 | 7 | _ | |a altmetric:149207338 |2 altmetric |
| 024 | 7 | _ | |a 37256585 |2 pmid |
| 024 | 7 | _ | |a WOS:001020077000001 |2 WOS |
| 024 | 7 | _ | |a openalex:W4378782584 |2 openalex |
| 037 | _ | _ | |a PUBDB-2024-00256 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 660 |
| 100 | 1 | _ | |a Wang, Yue |0 P:(DE-H253)PIP1099920 |b 0 |
| 245 | _ | _ | |a Reactive Deposition Versus Strong Electrostatic Adsorption (SEA): A Key to Highly Active Single Atom Co‐Catalysts in Photocatalytic H$_2$ Generation |
| 260 | _ | _ | |a Weinheim |c 2023 |b Wiley-VCH |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1706179160_1553070 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a In recent years, the use of single atoms (SAs) has become of a rapidly increasing significance in photocatalytic H$_2$ generation; here SA noble metals (mainly Pt SAs) can act as highly effective co-catalysts. The classic strategy to decorate oxide semiconductor surfaces with maximally dispersed SAs relies on “strong electrostatic adsorption” (SEA) of suitable noble metal complexes. In the case of TiO$_2$ – the classic benchmark photocatalyst – SEA calls for adsorption of cationic Pt complexes such as [(NH$_3$)$_4$Pt]$^{2+}$ which then are thermally reacted to surface-bound SAs. While SEA is widely used in literature, in the present work it is shown by a direct comparison that reactive attachment based on the reductive anchoring of SAs, e.g., from hexachloroplatinic(IV) acid (H$_2$PtCl$_6$) leads directly to SAs in a configuration with a significantly higher specific activity than SAs deposited with SEA – and this at a significantly lower Pt loading and without any thermal post-deposition treatments. Overall, the work demonstrates that the reactive deposition strategy is superior to the classic SEA concept as it provides a direct electronically well-connected SA-anchoring and thus leads to highly active single-atom sites in photocatalysis. |
| 536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
| 693 | _ | _ | |a PETRA III |f PETRA Beamline P65 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P65-20150101 |6 EXP:(DE-H253)P-P65-20150101 |x 0 |
| 700 | 1 | _ | |a Qin, Shanshan |b 1 |
| 700 | 1 | _ | |a Denisov, Nikita |b 2 |
| 700 | 1 | _ | |a Kim, Hyesung |b 3 |
| 700 | 1 | _ | |a Bad'ura, Zdeněk |b 4 |
| 700 | 1 | _ | |a Sarma, Bidyut Bikash |0 P:(DE-H253)PIP1094186 |b 5 |
| 700 | 1 | _ | |a Schmuki, Patrik |0 P:(DE-H253)PIP1087860 |b 6 |e Corresponding author |
| 773 | _ | _ | |a 10.1002/adma.202211814 |g Vol. 35, no. 32, p. 2211814 |0 PERI:(DE-600)1474949-X |n 32 |p 2211814 |t Advanced materials |v 35 |y 2023 |x 0935-9648 |
| 856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/601547/files/Advanced%20Materials%20-%202023%20-%20Wang%20-%20Reactive%20Deposition%20Versus%20Strong%20Electrostatic%20Adsorption%20%20SEA%20%20%20A%20Key%20to%20Highly%20Active.pdf |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/601547/files/Advanced%20Materials%20-%202023%20-%20Wang%20-%20Reactive%20Deposition%20Versus%20Strong%20Electrostatic%20Adsorption%20%20SEA%20%20%20A%20Key%20to%20Highly%20Active.pdf?subformat=pdfa |
| 909 | C | O | |o oai:bib-pubdb1.desy.de:601547 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1099920 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1094186 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-H253)PIP1087860 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 0 |
| 914 | 1 | _ | |y 2023 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-10-21 |w ger |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV MATER : 2022 |d 2023-10-21 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-21 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-21 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-21 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-21 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-10-21 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-21 |
| 915 | _ | _ | |a IF >= 25 |0 StatID:(DE-HGF)9925 |2 StatID |b ADV MATER : 2022 |d 2023-10-21 |
| 920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|