000601547 001__ 601547
000601547 005__ 20250724132714.0
000601547 0247_ $$2doi$$a10.1002/adma.202211814
000601547 0247_ $$2ISSN$$a0935-9648
000601547 0247_ $$2ISSN$$a1521-4095
000601547 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-00256
000601547 0247_ $$2altmetric$$aaltmetric:149207338
000601547 0247_ $$2pmid$$a37256585
000601547 0247_ $$2WOS$$aWOS:001020077000001
000601547 0247_ $$2openalex$$aopenalex:W4378782584
000601547 037__ $$aPUBDB-2024-00256
000601547 041__ $$aEnglish
000601547 082__ $$a660
000601547 1001_ $$0P:(DE-H253)PIP1099920$$aWang, Yue$$b0
000601547 245__ $$aReactive Deposition Versus Strong Electrostatic Adsorption (SEA): A Key to Highly Active Single Atom Co‐Catalysts in Photocatalytic H$_2$ Generation
000601547 260__ $$aWeinheim$$bWiley-VCH$$c2023
000601547 3367_ $$2DRIVER$$aarticle
000601547 3367_ $$2DataCite$$aOutput Types/Journal article
000601547 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1706179160_1553070
000601547 3367_ $$2BibTeX$$aARTICLE
000601547 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000601547 3367_ $$00$$2EndNote$$aJournal Article
000601547 520__ $$aIn recent years, the use of single atoms (SAs) has become of a rapidly increasing significance in photocatalytic H$_2$ generation; here SA noble metals (mainly Pt SAs) can act as highly effective co-catalysts. The classic strategy to decorate oxide semiconductor surfaces with maximally dispersed SAs relies on “strong electrostatic adsorption” (SEA) of suitable noble metal complexes. In the case of TiO$_2$ – the classic benchmark photocatalyst – SEA calls for adsorption of cationic Pt complexes such as [(NH$_3$)$_4$Pt]$^{2+}$ which then are thermally reacted to surface-bound SAs. While SEA is widely used in literature, in the present work it is shown by a direct comparison that reactive attachment based on the reductive anchoring of SAs, e.g., from hexachloroplatinic(IV) acid (H$_2$PtCl$_6$) leads directly to SAs in a configuration with a significantly higher specific activity than SAs deposited with SEA – and this at a significantly lower Pt loading and without any thermal post-deposition treatments. Overall, the work demonstrates that the reactive deposition strategy is superior to the classic SEA concept as it provides a direct electronically well-connected SA-anchoring and thus leads to highly active single-atom sites in photocatalysis.
000601547 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000601547 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000601547 693__ $$0EXP:(DE-H253)P-P65-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P65-20150101$$aPETRA III$$fPETRA Beamline P65$$x0
000601547 7001_ $$aQin, Shanshan$$b1
000601547 7001_ $$aDenisov, Nikita$$b2
000601547 7001_ $$aKim, Hyesung$$b3
000601547 7001_ $$aBad'ura, Zdeněk$$b4
000601547 7001_ $$0P:(DE-H253)PIP1094186$$aSarma, Bidyut Bikash$$b5
000601547 7001_ $$0P:(DE-H253)PIP1087860$$aSchmuki, Patrik$$b6$$eCorresponding author
000601547 773__ $$0PERI:(DE-600)1474949-X$$a10.1002/adma.202211814$$gVol. 35, no. 32, p. 2211814$$n32$$p2211814$$tAdvanced materials$$v35$$x0935-9648$$y2023
000601547 8564_ $$uhttps://bib-pubdb1.desy.de/record/601547/files/Advanced%20Materials%20-%202023%20-%20Wang%20-%20Reactive%20Deposition%20Versus%20Strong%20Electrostatic%20Adsorption%20%20SEA%20%20%20A%20Key%20to%20Highly%20Active.pdf$$yOpenAccess
000601547 8564_ $$uhttps://bib-pubdb1.desy.de/record/601547/files/Advanced%20Materials%20-%202023%20-%20Wang%20-%20Reactive%20Deposition%20Versus%20Strong%20Electrostatic%20Adsorption%20%20SEA%20%20%20A%20Key%20to%20Highly%20Active.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000601547 909CO $$ooai:bib-pubdb1.desy.de:601547$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000601547 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1099920$$aExternal Institute$$b0$$kExtern
000601547 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1094186$$aExternal Institute$$b5$$kExtern
000601547 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1087860$$aExternal Institute$$b6$$kExtern
000601547 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000601547 9141_ $$y2023
000601547 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000601547 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000601547 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
000601547 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2022$$d2023-10-21
000601547 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000601547 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000601547 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000601547 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000601547 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-21
000601547 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21
000601547 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV MATER : 2022$$d2023-10-21
000601547 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000601547 980__ $$ajournal
000601547 980__ $$aVDB
000601547 980__ $$aUNRESTRICTED
000601547 980__ $$aI:(DE-H253)HAS-User-20120731
000601547 9801_ $$aFullTexts