000601487 001__ 601487
000601487 005__ 20250724132713.0
000601487 0247_ $$2doi$$a10.1007/s40194-023-01616-1
000601487 0247_ $$2ISSN$$a0043-2288
000601487 0247_ $$2ISSN$$a1878-6669
000601487 0247_ $$2datacite_doi$$a10.3204/PUBDB-2024-00217
000601487 0247_ $$2WOS$$aWOS:001096596700001
000601487 0247_ $$2openalex$$aopenalex:W4388398962
000601487 037__ $$aPUBDB-2024-00217
000601487 041__ $$aEnglish
000601487 082__ $$a620
000601487 1001_ $$0P:(DE-H253)PIP1093675$$aChung, Woo-Sik$$b0$$eCorresponding author
000601487 245__ $$aIn situ X-ray phase contrast imaging of the melt and vapor capillary behavior during the welding regime transition on aluminum with limited material thickness
000601487 260__ $$aHeidelberg$$bSpringer$$c2023
000601487 3367_ $$2DRIVER$$aarticle
000601487 3367_ $$2DataCite$$aOutput Types/Journal article
000601487 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1706618873_646266
000601487 3367_ $$2BibTeX$$aARTICLE
000601487 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000601487 3367_ $$00$$2EndNote$$aJournal Article
000601487 520__ $$aThe X-ray phase contrast imaging is a powerful method to understand the fundamental behavior of the melt and keyhole during the laser beam welding process. In this paper, the keyhole-induced vapor capillary formation in the melt pool is investigated by using an adjustable laser beam source. For this purpose, the aluminum A1050 specimen with a thickness of 0.5 mm is molten only with the heat conduction welding regime by using the ring-mode laser beam. Once the specimen is molten through, the core multi-mode laser beam is then applied to vaporize the melt and a transition to keyhole welding regime occurs. Therefore, the core multi-mode laser beam with an intensity value of 33.3 MW/cm2 is investigated. The correlation between the keyhole-induced vapor capillary and the melt behavior is further investigated in this paper which was recorded with a high sampling rate of 19 kHz. In addition, a theoretical calculation about the keyhole depth is discussed in this paper.
000601487 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000601487 536__ $$0G:(GEPRIS)236616214$$aDFG project 236616214 - SFB 1120: Bauteilpräzision durch Beherrschung von Schmelze und Erstarrung in Produktionsprozessen (236616214)$$c236616214$$x1
000601487 542__ $$2Crossref$$i2023-11-06$$uhttps://creativecommons.org/licenses/by/4.0
000601487 542__ $$2Crossref$$i2023-11-06$$uhttps://creativecommons.org/licenses/by/4.0
000601487 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000601487 693__ $$0EXP:(DE-H253)P-P07-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P07-20150101$$aPETRA III$$fPETRA Beamline P07$$x0
000601487 7001_ $$0P:(DE-HGF)0$$aHummel, M.$$b1
000601487 7001_ $$0P:(DE-H253)PIP1103346$$aSpurk, C.$$b2
000601487 7001_ $$0P:(DE-H253)PIP1092116$$aHäusler, A.$$b3
000601487 7001_ $$0P:(DE-H253)PIP1090446$$aOlowinsky, A.$$b4
000601487 7001_ $$0P:(DE-HGF)0$$aHäfner, C.$$b5
000601487 7001_ $$0P:(DE-H253)PIP1002967$$aBeckmann, Felix$$b6
000601487 7001_ $$0P:(DE-H253)PIP1030371$$aMoosmann, Julian$$b7
000601487 77318 $$2Crossref$$3journal-article$$a10.1007/s40194-023-01616-1$$bSpringer Science and Business Media LLC$$d2023-11-06$$n1$$p43-50$$tWelding in the World$$v68$$x0043-2288$$y2023
000601487 773__ $$0PERI:(DE-600)2055724-3$$a10.1007/s40194-023-01616-1$$gVol. 68, no. 1, p. 43 - 50$$n1$$p43-50$$tWelding in the world$$v68$$x0043-2288$$y2023
000601487 8564_ $$uhttps://bib-pubdb1.desy.de/record/601487/files/s40194-023-01616-1.pdf$$yOpenAccess
000601487 8564_ $$uhttps://bib-pubdb1.desy.de/record/601487/files/s40194-023-01616-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000601487 909CO $$ooai:bib-pubdb1.desy.de:601487$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000601487 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1093675$$aExternal Institute$$b0$$kExtern
000601487 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1103346$$aExternal Institute$$b2$$kExtern
000601487 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1092116$$aExternal Institute$$b3$$kExtern
000601487 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1090446$$aExternal Institute$$b4$$kExtern
000601487 9101_ $$0I:(DE-588b)1231250402$$6P:(DE-H253)PIP1002967$$aHelmholtz-Zentrum Hereon$$b6$$kHereon
000601487 9101_ $$0I:(DE-588b)1231250402$$6P:(DE-H253)PIP1030371$$aHelmholtz-Zentrum Hereon$$b7$$kHereon
000601487 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000601487 9141_ $$y2024
000601487 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
000601487 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000601487 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
000601487 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-08-23$$wger
000601487 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000601487 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
000601487 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
000601487 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
000601487 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bWELD WORLD : 2022$$d2024-12-13
000601487 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
000601487 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-13
000601487 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000601487 9201_ $$0I:(DE-H253)Hereon-20210428$$kHereon$$lHelmholtz-Zentrum Hereon$$x1
000601487 980__ $$ajournal
000601487 980__ $$aVDB
000601487 980__ $$aUNRESTRICTED
000601487 980__ $$aI:(DE-H253)HAS-User-20120731
000601487 980__ $$aI:(DE-H253)Hereon-20210428
000601487 9801_ $$aFullTexts
000601487 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jajp.2021$$uHaddad E, Chung WS, Katz O, Helm J, Olowinsky A, Gillner A (2022) Laser micro welding with fiber lasers for battery and fuel cell based electromobility. J Adv Joining Processes 5:100085. https://doi.org/10.1016/j.jajp.2021
000601487 999C5 $$1V Dimatteo$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.optlastec.2021.107495$$p107495 -$$tOpt Laser Technol$$uDimatteo V, Ascari A, Liverani E, Fortunato A (2022) Experimental investigation on the effect of spot diameter on continuous-wave laser welding of copper and aluminum thin sheets for battery manufacturing. Opt Laser Technol 145:107495$$v145$$y2022
000601487 999C5 $$1K Schricker$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.procir.2022.08.079$$p501 -$$tProcedia CIRP$$uSchricker K, Schmidt L, Friedmann H, Diegel C, Seibold M, Hellwig P, Chen Y (2022) Characterization of keyhole dynamics in laser welding of copper by means of high-speed synchrotron X-ray imaging. Procedia CIRP 111:501–506$$v111$$y2022
000601487 999C5 $$1Y Chen$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.apmt.2020.100650$$p100650 -$$tAppl Mater Today$$uChen Y, Clark S, Leung C, Sinclair L, Marussi S, Olbinado M, Lee P (2020) In-situ Synchrotron imaging of keyhole mode multi-layer laser powder bed fusion additive manufacturing. Appl Mater Today 20:100650$$v20$$y2020
000601487 999C5 $$1S Shevchik$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-020-60294-x$$p3389 -$$tSci Rep$$uShevchik S, Le-Quang T, Meylan B, Farahani F, Olbinado M, Rack A, Wasmer K (2020) Supervised deep learning for real-time quality monitoring of laser welding with X-ray radiographic guidance. Sci Rep 10(1):3389$$v10$$y2020
000601487 999C5 $$1M Hummel$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmapro.2021.04.063$$p170 -$$tJ Manuf Processes$$uHummel M, Külkens M, Schöler C, Schulz W, Gillner A (2021) In situ X-ray tomography investigations on laser welding of copper with 515 and 1030 nm laser beam sources”. J Manuf Processes 67:170–176$$v67$$y2021
000601487 999C5 $$1W Chung$$2Crossref$$9-- missing cx lookup --$$a10.2351/7.0000772$$p42019 -$$tJ Laser Appl$$uChung W, Häusler A, Hummel M, Olowinsky A, Gillner A, Beckmann F, Moosmann J (2021) In-situ x-ray phase contrast observation of the full penetration spot welding on limited aluminum material thickness. J Laser Appl 34(4):42019$$v34$$y2021
000601487 999C5 $$1P Berger$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.phpro.2013.03.072$$p216 -$$tPhys Procedia$$uBerger P, Hügel H (2013) Fluid dynamic effects in keyhole welding – an attempt to characterize different regimes. Phys Procedia 41:216–224$$v41$$y2013
000601487 999C5 $$1D Dijken$$2Crossref$$9-- missing cx lookup --$$a10.2351/1.1538245$$p11 -$$tJ Laser Appl$$uDijken D, Hoving W, De Hosson J (2003) Laser penetration spike welding: a microlaser welding technique enabling novel product designs and constructions. J Laser Appl 15(1):11–18$$v15$$y2003
000601487 999C5 $$1M Leitner$$2Crossref$$uLeitner M, Leitner T, Schmon A, Aziz K, Pottlacher G (2017) Thermophysical properties of liquid aluminum. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials. Science 48(6):3036–3045$$y2017
000601487 999C5 $$1S Britten$$2Crossref$$tBauteilschonende Verbindungstechnik Auf Metallisierungen Durch Moduliertes Laserstrahlschweißen$$uBritten S (2017) Bauteilschonende Verbindungstechnik Auf Metallisierungen Durch Moduliertes Laserstrahlschweißen. Apprimus Verlag, Dissertation$$y2017
000601487 999C5 $$1I Naim Md$$2Crossref$$uNaim Md I (2012) Nd : YAG laser welding for photonics devices packaging. IntechOpen 2012:77$$y2012
000601487 999C5 $$1M Beck$$2Crossref$$tLaser in der Materialbearbeitung - Forschungsberichte des IFSW$$uBeck M (1996) Modellierung des Lasertiefschweißens. In: Hügel H (ed) Laser in der Materialbearbeitung - Forschungsberichte des IFSW. Teubner Verlag, Dissertation$$y1996
000601487 999C5 $$1W Chung$$2Crossref$$uChung W, Haeusler A, Olowinsky A, Gillner A, Poprawe R (2018) Investigation to increase the welding joint area with modulated laser beam welding over gap. J Laser Micro Nanoeng 13(2):117–125$$y2018