001     601187
005     20251017181431.0
024 7 _ |a 10.1038/s41598-024-67972-0
|2 doi
024 7 _ |a 10.3204/PUBDB-2024-00159
|2 datacite_doi
024 7 _ |a 39080313
|2 pmid
024 7 _ |a WOS:001281320200111
|2 WOS
024 7 _ |2 openalex
|a openalex:W4401122392
037 _ _ |a PUBDB-2024-00159
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Roseker, Wojciech
|0 P:(DE-H253)PIP1004234
|b 0
|e Corresponding author
|u desy
245 _ _ |a Hard X-ray Fourier transform holography at free electron lasers source
260 _ _ |a [London]
|c 2024
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1722412855_2794448
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a We would also like to acknowledge support by DFG - SFB-925 - project 170620586.
520 _ _ |a We report on the feasibility of Fourier transform holography in the hard X-ray regime using a Free Electron Laser source. Our study shows successful single and multi-pulse holographic reconstructions of the nanostructures. We observe beam-induced heating of the sample exposed to the intense X-ray pulses leading to reduced visibility of the holographic reconstructions.Furthermore, we extended our study exploring the feasibility of recording holographic reconstructions with hard X-ray split-and-delay optics. Our study paves the way towards studying dynamics at sub-nanosecond timescales and atomic lengthscales.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a DFG project 390715994 - EXC 2056: CUI: Advanced Imaging of Matter (390715994)
|0 G:(GEPRIS)390715994
|c 390715994
|x 1
536 _ _ |a DFG project 170620586 - SFB 925: Licht-induzierte Dynamik und Kontrolle korrelierter Quantensysteme (170620586)
|0 G:(GEPRIS)170620586
|c 170620586
|x 2
542 _ _ |i 2024-07-30
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2024-07-30
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
693 _ _ |0 EXP:(DE-MLZ)External-20140101
|5 EXP:(DE-MLZ)External-20140101
|e Measurement at external facility
|x 0
700 1 _ |a Rysov, Rustam
|0 P:(DE-H253)PIP1024691
|b 1
700 1 _ |a Jo, Wonhyuk
|0 P:(DE-H253)PIP1087610
|b 2
700 1 _ |a Osaka, Taito
|0 P:(DE-H253)PIP1023988
|b 3
700 1 _ |a Philippi-Kobs, Andre
|0 P:(DE-H253)PIP1016584
|b 4
700 1 _ |a Mueller, Leonard
|0 P:(DE-H253)PIP1010497
|b 5
700 1 _ |a Riepp, Matthias
|0 P:(DE-H253)PIP1031796
|b 6
700 1 _ |a Walther, Michael
|0 P:(DE-H253)PIP1005803
|b 7
700 1 _ |a Zozulya, Alexey
|0 P:(DE-H253)PIP1007378
|b 8
700 1 _ |a Bocklage, Lars
|0 P:(DE-H253)PIP1016607
|b 9
700 1 _ |a Lehmkühler, Felix
|0 P:(DE-H253)PIP1008819
|b 10
700 1 _ |a Westermeier, Fabian
|0 P:(DE-H253)PIP1006002
|b 11
700 1 _ |a Weschke, Daniel
|0 P:(DE-H253)PIP1016762
|b 12
700 1 _ |a Sprung, Michael
|0 P:(DE-H253)PIP1007141
|b 13
700 1 _ |a Inoue, Ichiro
|0 P:(DE-H253)PIP1091862
|b 14
700 1 _ |a Yabashi, Makina
|0 P:(DE-H253)PIP1108303
|b 15
700 1 _ |a Gruebel, Gerhard
|0 P:(DE-H253)PIP1000392
|b 16
773 1 8 |a 10.1038/s41598-024-67972-0
|b Springer Science and Business Media LLC
|d 2024-07-30
|n 1
|p 17480
|3 journal-article
|2 Crossref
|t Scientific Reports
|v 14
|y 2024
|x 2045-2322
773 _ _ |a 10.1038/s41598-024-67972-0
|0 PERI:(DE-600)2615211-3
|n 1
|p 17480
|t Scientific reports
|v 14
|y 2024
|x 2045-2322
856 4 _ |u https://bib-pubdb1.desy.de/record/601187/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/601187/files/Internal_review_comments.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/601187/files/Internal_review_text.pdf
856 4 _ |y OpenAccess
|z StatID:(DE-HGF)0510
|u https://bib-pubdb1.desy.de/record/601187/files/Manuscript%20.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/601187/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/601187/files/Internal_review_comments.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/601187/files/Internal_review_text.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|z StatID:(DE-HGF)0510
|u https://bib-pubdb1.desy.de/record/601187/files/Manuscript%20.pdf?subformat=pdfa
856 4 _ |y Restricted
|z StatID:(DE-HGF)0599
|u https://bib-pubdb1.desy.de/record/601187/files/s41598-024-67972-0.pdf
856 4 _ |y Restricted
|x pdfa
|z StatID:(DE-HGF)0599
|u https://bib-pubdb1.desy.de/record/601187/files/s41598-024-67972-0.pdf?subformat=pdfa
856 4 _ |u https://bib-pubdb1.desy.de/record/601187/files/Article%20Approval%20Service.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/601187/files/Article%20Approval%20Service.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:bib-pubdb1.desy.de:601187
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1004234
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 0
|6 P:(DE-H253)PIP1004234
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1024691
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 1
|6 P:(DE-H253)PIP1024691
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1087610
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 2
|6 P:(DE-H253)PIP1087610
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1023988
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1016584
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 4
|6 P:(DE-H253)PIP1016584
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 5
|6 P:(DE-H253)PIP1010497
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1031796
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 6
|6 P:(DE-H253)PIP1031796
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1005803
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 7
|6 P:(DE-H253)PIP1005803
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 8
|6 P:(DE-H253)PIP1007378
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 9
|6 P:(DE-H253)PIP1016607
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 9
|6 P:(DE-H253)PIP1016607
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 10
|6 P:(DE-H253)PIP1008819
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 10
|6 P:(DE-H253)PIP1008819
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 11
|6 P:(DE-H253)PIP1006002
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 11
|6 P:(DE-H253)PIP1006002
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 12
|6 P:(DE-H253)PIP1016762
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 13
|6 P:(DE-H253)PIP1007141
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 13
|6 P:(DE-H253)PIP1007141
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 14
|6 P:(DE-H253)PIP1091862
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 14
|6 P:(DE-H253)PIP1091862
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 15
|6 P:(DE-H253)PIP1108303
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 15
|6 P:(DE-H253)PIP1108303
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 16
|6 P:(DE-H253)PIP1000392
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-24
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-07-29T15:28:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-07-29T15:28:26Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-07-29T15:28:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Springer Nature 01.01.2024
|2 APC
|0 PC:(DE-HGF)0178
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 1 _ |0 I:(DE-H253)FS-PETRA-S-20210408
|k FS-PETRA-S
|l PETRA-S
|x 0
920 1 _ |0 I:(DE-H253)FS-CXS-20130727
|k FS-CXS
|l Coherent X-ray Scattering
|x 1
920 1 _ |0 I:(DE-H253)FS-SMP-20171124
|k FS-SMP
|l Spectroscopy of molecular processes
|x 2
920 1 _ |0 I:(DE-H253)FS-PS-20131107
|k FS-PS
|l FS-Photon Science
|x 3
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-PETRA-S-20210408
980 _ _ |a I:(DE-H253)FS-CXS-20130727
980 _ _ |a I:(DE-H253)FS-SMP-20171124
980 _ _ |a I:(DE-H253)FS-PS-20131107
980 _ _ |a APC
999 C 5 |a 10.1038/nphoton.2010.176
|9 -- missing cx lookup --
|1 P Emma
|p 641 -
|2 Crossref
|u Emma, P. et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photon. 4, 641–647. https://doi.org/10.1038/nphoton.2010.176 (2010).
|t Nat. Photon.
|v 4
|y 2010
999 C 5 |a 10.1038/nphoton.2012.141
|9 -- missing cx lookup --
|1 T Ishikawa
|p 540 -
|2 Crossref
|u Ishikawa, T. et al. A compact X-ray free-electron laser emitting in the sub-ångström region. Nat. Photon. 6, 540–544. https://doi.org/10.1038/nphoton.2012.141 (2012).
|t Nat. Photon.
|v 6
|y 2012
999 C 5 |a 10.1038/s41566-017-0029-8
|9 -- missing cx lookup --
|1 H-S Kang
|p 708 -
|2 Crossref
|u Kang, H.-S. et al. Hard X-ray free-electron laser with femtosecond-scale timing jitter. Nat. Photon. 11, 708–713. https://doi.org/10.1038/s41566-017-0029-8 (2017).
|t Nat. Photon.
|v 11
|y 2017
999 C 5 |a 10.1038/s41566-020-0607-z
|1 W Decking
|9 -- missing cx lookup --
|2 Crossref
|u Decking, W. et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photon.https://doi.org/10.1038/s41566-020-0607-z (2020).
|t Nat. Photon.
|y 2020
999 C 5 |a 10.1038/s41566-020-00712-8
|9 -- missing cx lookup --
|1 E Prat
|p 748 -
|2 Crossref
|u Prat, E. et al. A compact and cost-effective hard X-ray free-electron laser driven by a high-brightness and low-energy electron beam. Nat. Photon. 14, 748–754. https://doi.org/10.1038/s41566-020-00712-8 (2020).
|t Nat. Photon.
|v 14
|y 2020
999 C 5 |a 10.1038/srep05234
|9 -- missing cx lookup --
|1 F Lehmkühler
|p 5234 -
|2 Crossref
|u Lehmkühler, F. et al. Single shot coherence properties of the free-electron laser SACLA in the hard X-ray regime. Sci. Rep. 4, 5234. https://doi.org/10.1038/srep05234 (2015).
|t Sci. Rep.
|v 4
|y 2015
999 C 5 |a 10.1364/OE.21.024647
|9 -- missing cx lookup --
|1 S Lee
|p 24647 -
|2 Crossref
|u Lee, S. et al. Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS. Opt. Express 21, 24647. https://doi.org/10.1364/OE.21.024647 (2013).
|t Opt. Express
|v 21
|y 2013
999 C 5 |a 10.1038/nphoton.2010.240
|9 -- missing cx lookup --
|1 HN Chapman
|p 833 -
|2 Crossref
|u Chapman, H. N. & Nugent, K. A. Coherent lensless X-ray imaging. Nat. Photon. 4, 833–839. https://doi.org/10.1038/nphoton.2010.240 (2010).
|t Nat. Photon.
|v 4
|y 2010
999 C 5 |a 10.1038/nature09750
|9 -- missing cx lookup --
|1 HN Chapman
|p 73 -
|2 Crossref
|u Chapman, H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77. https://doi.org/10.1038/nature09750 (2011).
|t Nature
|v 470
|y 2011
999 C 5 |a 10.1021/nl403247x
|9 -- missing cx lookup --
|1 Y Takahashi
|p 6028 -
|2 Crossref
|u Takahashi, Y. et al. Coherent diffraction imaging analysis of shape-controlled nanoparticles with focused Hard X-ray free-electron laser pulses. Nano Lett. 13, 6028–6032. https://doi.org/10.1021/nl403247x (2013).
|t Nano Lett.
|v 13
|y 2013
999 C 5 |a 10.1103/physrevlett.112.217203
|9 -- missing cx lookup --
|1 C von Korff Schmising
|p 217203 -
|2 Crossref
|u von Korff Schmising, C. et al. Imaging ultrafast demagnetization dynamics after a spatially localized optical excitation. Phys. Rev. Lett. 112, 217203. https://doi.org/10.1103/physrevlett.112.217203 (2014).
|t Phys. Rev. Lett.
|v 112
|y 2014
999 C 5 |a 10.1364/OE.18.027251
|9 -- missing cx lookup --
|1 C Tieg
|p 27251 -
|2 Crossref
|u Tieg, C. et al. Imaging the in-plane magnetization in a Co microstructure by Fourier transform holography. Opt. Express 18, 27251. https://doi.org/10.1364/OE.18.027251 (2010).
|t Opt. Express
|v 18
|y 2010
999 C 5 |a 10.1038/s41567-022-01848-w
|1 AS Johnson
|9 -- missing cx lookup --
|2 Crossref
|u Johnson, A. S. et al. Ultrafast X-ray imaging of the light-induced phase transition in VO2. Nat. Phys.https://doi.org/10.1038/s41567-022-01848-w (2022).
|t Nat. Phys.
|y 2022
999 C 5 |a 10.1364/OL.3.000027
|9 -- missing cx lookup --
|1 JR Fienup
|p 27 -
|2 Crossref
|u Fienup, J. R. Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett. 3, 27–29. https://doi.org/10.1364/OL.3.000027 (1978).
|t Opt. Lett.
|v 3
|y 1978
999 C 5 |a 10.1038/nature03139
|9 -- missing cx lookup --
|1 S Eisebitt
|p 885 -
|2 Crossref
|u Eisebitt, S. et al. Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432, 885–888. https://doi.org/10.1038/nature03139 (2004).
|t Nature
|v 432
|y 2004
999 C 5 |a 10.1038/nature06049
|9 -- missing cx lookup --
|1 HN Chapman
|p 676 -
|2 Crossref
|u Chapman, H. N. et al. Femtosecond time-delay X-ray holography. Nature 448, 676–679. https://doi.org/10.1038/nature06049 (2007).
|t Nature
|v 448
|y 2007
999 C 5 |a 10.1038/s41566-018-0110-y
|9 -- missing cx lookup --
|1 T Gorkhover
|p 150 -
|2 Crossref
|u Gorkhover, T. et al. Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles. Nat. Photon. 12, 150–153. https://doi.org/10.1038/s41566-018-0110-y (2018).
|t Nat. Photon.
|v 12
|y 2018
999 C 5 |a 10.1103/PhysRevLett.100.245503
|9 -- missing cx lookup --
|1 L-M Stadler
|p 245503 -
|2 Crossref
|u Stadler, L.-M. et al. Hard X Ray Holographic Diffraction Imaging. Phys. Rev. Lett. 100, 245503. https://doi.org/10.1103/PhysRevLett.100.245503 (2008).
|t Phys. Rev. Lett.
|v 100
|y 2008
999 C 5 |a 10.1364/OPTICA.410851
|9 -- missing cx lookup --
|1 K Ayyer
|p 15 -
|2 Crossref
|u Ayyer, K. et al. 3D diffractive imaging of nanoparticle ensembles using an X-ray laser. Optica 8, 15. https://doi.org/10.1364/OPTICA.410851 (2021).
|t Optica
|v 8
|y 2021
999 C 5 |a 10.1063/1.2364259
|9 -- missing cx lookup --
|1 WF Schlotter
|p 163112 -
|2 Crossref
|u Schlotter, W. F. et al. Multiple reference Fourier transform holography with soft x rays. Appl. Phys. Lett. 89, 163112. https://doi.org/10.1063/1.2364259 (2006).
|t Appl. Phys. Lett.
|v 89
|y 2006
999 C 5 |a 10.1038/s41598-022-06754-y
|9 -- missing cx lookup --
|1 F-J Decker
|p 3253 -
|2 Crossref
|u Decker, F.-J. et al. Tunable X-ray free electron laser multi-pulses with nanosecond separation. Sci. Rep. 12, 3253. https://doi.org/10.1038/s41598-022-06754-y (2022).
|t Sci. Rep.
|v 12
|y 2022
999 C 5 |a 10.1364/OL.34.001768
|9 -- missing cx lookup --
|1 W Roseker
|p 1768 -
|2 Crossref
|u Roseker, W. et al. Performance of a picosecond X-ray delay line unit at 839 keV. Opt. Lett. 34, 1768. https://doi.org/10.1364/OL.34.001768 (2009).
|t Opt. Lett.
|v 34
|y 2009
999 C 5 |a 10.1107/S0909049511004511
|9 -- missing cx lookup --
|1 W Roseker
|p 481 -
|2 Crossref
|u Roseker, W. et al. Development of a hard X-ray delay line for X-ray photon correlation spectroscopy and jitter-free pump-probe experiments at X-ray free-electron laser sources. Journal of Synchrotron Radiation 18, 481–491. https://doi.org/10.1107/S0909049511004511 (2011).
|t Journal of Synchrotron Radiation
|v 18
|y 2011
999 C 5 |a 10.1107/S2052252517014014
|1 T Osaka
|9 -- missing cx lookup --
|2 Crossref
|u Osaka, T. et al. Characterization of temporal coherence of hard X-ray free-electron laser pulses with single-shot interferograms. IUCrJhttps://doi.org/10.1107/S2052252517014014 (2017).
|t IUCrJ
|y 2017
999 C 5 |a 10.1063/1.5084635
|9 -- missing cx lookup --
|2 Crossref
|u Sun, Y., Robert, A. & Zhu, D. Design of a compact hard X-ray split-delay system based on variable-gap channelcut crystals. In Proceedings of the 12th International Conference on Synchrotron Radiation—SRI2018—SRI2018, 060004. https://doi.org/10.1063/1.5084635 (2019).
999 C 5 |a 10.1107/S1600577519004570
|9 -- missing cx lookup --
|1 R Rysov
|p 1052 -
|2 Crossref
|u Rysov, R., Roseker, W., Walther, M. & Grübel, G. Compact hard X-ray split-and-delay line for studying ultrafast dynamics at free-electron laser sources. J. Synchrotron Radiat. 26, 1052–1057. https://doi.org/10.1107/S1600577519004570 (2019).
|t J. Synchrotron Radiat.
|v 26
|y 2019
999 C 5 |a 10.1063/1.5027071
|9 -- missing cx lookup --
|1 W Lu
|p 063121 -
|2 Crossref
|u Lu, W. et al. Development of a hard X-ray split-and-delay line and performance simulations for two-color pump-probe experiments at the European XFEL. Rev. Sci. Instrum. 89, 063121. https://doi.org/10.1063/1.5027071 (2018).
|t Rev. Sci. Instrum.
|v 89
|y 2018
999 C 5 |a 10.1038/nphoton.2010.287
|9 -- missing cx lookup --
|1 CM Günther
|p 99 -
|2 Crossref
|u Günther, C. M. et al. Sequential femtosecond X-ray imaging. Nat. Photon. 5, 99–102. https://doi.org/10.1038/nphoton.2010.287 (2011).
|t Nat. Photon.
|v 5
|y 2011
999 C 5 |a 10.1038/s41467-018-04178-9
|9 -- missing cx lookup --
|1 W Roseker
|p 1704 -
|2 Crossref
|u Roseker, W. et al. Towards ultrafast dynamics with split-pulse X-ray photon correlation spectroscopy at free electron laser sources. Nat. Commun. 9, 1704. https://doi.org/10.1038/s41467-018-04178-9 (2018).
|t Nat. Commun.
|v 9
|y 2018
999 C 5 |a 10.1103/PhysRevResearch.4.L012035
|9 -- missing cx lookup --
|1 T Osaka
|p L012035 -
|2 Crossref
|u Osaka, T. et al. Hard X-ray intensity autocorrelation using direct two-photon absorption. Phys. Rev. Res. 4, L012035. https://doi.org/10.1103/PhysRevResearch.4.L012035 (2022).
|t Phys. Rev. Res.
|v 4
|y 2022
999 C 5 |a 10.1038/s41467-020-20036-z
|9 -- missing cx lookup --
|1 Y Shinohara
|p 6213 -
|2 Crossref
|u Shinohara, Y. et al. Split-pulse X-ray photon correlation spectroscopy with seeded X-rays from X-ray laser to study atomic-level dynamics. Nat. Commun. 11, 6213. https://doi.org/10.1038/s41467-020-20036-z (2020).
|t Nat. Commun.
|v 11
|y 2020
999 C 5 |a 10.1117/12.929759
|9 -- missing cx lookup --
|2 Crossref
|u Roseker, W. et al. Hard X-ray delay line for X-ray photon correlation spectroscopy and jitter-free pump-probe experiments at LCLS. 85040I, (San Diego, California, USA, 2012). https://doi.org/10.1117/12.929759.
999 C 5 |a 10.1016/j.jsb.2005.05.009
|9 -- missing cx lookup --
|1 M Van Heel
|p 250 -
|2 Crossref
|u Van Heel, M. & Schatz, M. Fourier shell correlation threshold criteria. J. Struct. Biol. 151, 250–262. https://doi.org/10.1016/j.jsb.2005.05.009 (2005).
|t J. Struct. Biol.
|v 151
|y 2005
999 C 5 |a 10.1038/nmeth.2448
|9 -- missing cx lookup --
|1 RPJ Nieuwenhuizen
|p 557 -
|2 Crossref
|u Nieuwenhuizen, R. P. J. et al. Measuring image resolution in optical nanoscopy. Nat. Methods 10, 557–562. https://doi.org/10.1038/nmeth.2448 (2013).
|t Nat. Methods
|v 10
|y 2013
999 C 5 |a 10.1088/1742-6596/2380/1/012118
|9 -- missing cx lookup --
|1 W Roseker
|p 012118 -
|2 Crossref
|u Roseker, W. et al. Hard X-ray USAXS Fourier transform holography. J. Phys. Conf. Ser. 2380, 012118. https://doi.org/10.1088/1742-6596/2380/1/012118 (2022).
|t J. Phys. Conf. Ser.
|v 2380
|y 2022
999 C 5 |a 10.1063/1.1728320
|9 -- missing cx lookup --
|1 S Eisebitt
|p 3373 -
|2 Crossref
|u Eisebitt, S. et al. Scalable approach for lensless imaging at x-ray wavelengths. Appl. Phys. Lett. 84, 3373–3375. https://doi.org/10.1063/1.1728320 (2004).
|t Appl. Phys. Lett.
|v 84
|y 2004
999 C 5 |a 10.1103/PhysRevLett.109.185502
|9 -- missing cx lookup --
|1 SO Hruszkewycz
|p 1 -
|2 Crossref
|u Hruszkewycz, S. O. et al. High contrast X-ray speckle from atomic-scale order in liquids and glasses. Phys. Rev. Lett. 109, 1. https://doi.org/10.1103/PhysRevLett.109.185502 (2012).
|t Phys. Rev. Lett.
|v 109
|y 2012
999 C 5 |a 10.1038/srep00057
|9 -- missing cx lookup --
|1 C David
|p 57 -
|2 Crossref
|u David, C. et al. Nanofocusing of hard X-ray free electron laser pulses using diamond based Fresnel zone plates. Sci. Rep. 1, 57. https://doi.org/10.1038/srep00057 (2011).
|t Sci. Rep.
|v 1
|y 2011
999 C 5 |a 10.1116/1.4981016
|9 -- missing cx lookup --
|1 MG Stanford
|p 030802 -
|2 Crossref
|u Stanford, M. G., Lewis, B. B., Mahady, K., Fowlkes, J. D. & Rack, P. D. Review Article: Advanced nanoscale patterning and material synthesis with gas field helium and neon ion beams. J. Vacuum Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 35, 030802. https://doi.org/10.1116/1.4981016 (2017).
|t J. Vacuum Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom.
|v 35
|y 2017
999 C 5 |a 10.1038/nphoton.2008.154
|9 -- missing cx lookup --
|1 S Marchesini
|p 560 -
|2 Crossref
|u Marchesini, S. et al. Massively parallel X-ray holography. Nat. Photon. 2, 560–563. https://doi.org/10.1038/nphoton.2008.154 (2008).
|t Nat. Photon.
|v 2
|y 2008
999 C 5 |a 10.1364/OE.15.009954
|9 -- missing cx lookup --
|1 SG Podorov
|p 9954 -
|2 Crossref
|u Podorov, S. G., Pavlov, K. M. & Paganin, D. M. A non-iterative reconstruction method for direct and unambiguous coherent diffractive imaging. Opt. Express 15, 9954. https://doi.org/10.1364/OE.15.009954 (2007).
|t Opt. Express
|v 15
|y 2007
999 C 5 |a 10.1038/ncomms5661
|9 -- missing cx lookup --
|1 AV Martin
|p 4661 -
|2 Crossref
|u Martin, A. V. et al. X-ray holography with a customizable reference. Nat. Commun. 5, 4661. https://doi.org/10.1038/ncomms5661 (2014).
|t Nat. Commun.
|v 5
|y 2014
999 C 5 |a 10.1364/OE.20.029210
|9 -- missing cx lookup --
|1 S Flewett
|p 29210 -
|2 Crossref
|u Flewett, S. et al. Holographically aided iterative phase retrieval. Opt. Express 20, 29210. https://doi.org/10.1364/OE.20.029210 (2012).
|t Opt. Express
|v 20
|y 2012
999 C 5 |a 10.1126/sciadv.aao4641
|9 -- missing cx lookup --
|1 O Kfir
|p eaao4641 -
|2 Crossref
|u Kfir, O. et al. Nanoscale magnetic imaging using circularly polarized high-harmonic radiation. Sci. Adv. 3, eaao4641. https://doi.org/10.1126/sciadv.aao4641 (2017).
|t Sci. Adv.
|v 3
|y 2017
999 C 5 |a 10.1038/35065045
|9 -- missing cx lookup --
|1 A Rousse
|p 65 -
|2 Crossref
|u Rousse, A. et al. Non-thermal melting in semiconductors measured at femtosecond resolution. Nature 410, 65–68. https://doi.org/10.1038/35065045 (2001).
|t Nature
|v 410
|y 2001
999 C 5 |a 10.1126/science.286.5443.1340
|9 -- missing cx lookup --
|1 CW Siders
|p 1340 -
|2 Crossref
|u Siders, C. W. et al. Detection of nonthermal melting by ultrafast X-ray diffraction. Science 286, 1340–1342. https://doi.org/10.1126/science.286.5443.1340 (1999).
|t Science
|v 286
|y 1999
999 C 5 |a 10.1063/1.4952905
|9 -- missing cx lookup --
|2 Crossref
|u Kameshima, T. et al. A scintillator fabricated by solid-state diffusion bonding for high spatial resolution X-ray imaging. In Proceedings of the 12th International Conference on Synchrotron Radiation Instrumentation—SRI2015, 040033, (New York, NY USA, 2016). https://doi.org/10.1063/1.4952905


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21