| Home > Publications database > Hard X-ray Fourier transform holography at free electron lasers source > print |
| 001 | 601187 | ||
| 005 | 20251017181431.0 | ||
| 024 | 7 | _ | |a 10.1038/s41598-024-67972-0 |2 doi |
| 024 | 7 | _ | |a 10.3204/PUBDB-2024-00159 |2 datacite_doi |
| 024 | 7 | _ | |a 39080313 |2 pmid |
| 024 | 7 | _ | |a WOS:001281320200111 |2 WOS |
| 024 | 7 | _ | |2 openalex |a openalex:W4401122392 |
| 037 | _ | _ | |a PUBDB-2024-00159 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 600 |
| 100 | 1 | _ | |a Roseker, Wojciech |0 P:(DE-H253)PIP1004234 |b 0 |e Corresponding author |u desy |
| 245 | _ | _ | |a Hard X-ray Fourier transform holography at free electron lasers source |
| 260 | _ | _ | |a [London] |c 2024 |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1722412855_2794448 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 500 | _ | _ | |a We would also like to acknowledge support by DFG - SFB-925 - project 170620586. |
| 520 | _ | _ | |a We report on the feasibility of Fourier transform holography in the hard X-ray regime using a Free Electron Laser source. Our study shows successful single and multi-pulse holographic reconstructions of the nanostructures. We observe beam-induced heating of the sample exposed to the intense X-ray pulses leading to reduced visibility of the holographic reconstructions.Furthermore, we extended our study exploring the feasibility of recording holographic reconstructions with hard X-ray split-and-delay optics. Our study paves the way towards studying dynamics at sub-nanosecond timescales and atomic lengthscales. |
| 536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 0 |
| 536 | _ | _ | |a DFG project 390715994 - EXC 2056: CUI: Advanced Imaging of Matter (390715994) |0 G:(GEPRIS)390715994 |c 390715994 |x 1 |
| 536 | _ | _ | |a DFG project 170620586 - SFB 925: Licht-induzierte Dynamik und Kontrolle korrelierter Quantensysteme (170620586) |0 G:(GEPRIS)170620586 |c 170620586 |x 2 |
| 542 | _ | _ | |i 2024-07-30 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
| 542 | _ | _ | |i 2024-07-30 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
| 693 | _ | _ | |0 EXP:(DE-MLZ)External-20140101 |5 EXP:(DE-MLZ)External-20140101 |e Measurement at external facility |x 0 |
| 700 | 1 | _ | |a Rysov, Rustam |0 P:(DE-H253)PIP1024691 |b 1 |
| 700 | 1 | _ | |a Jo, Wonhyuk |0 P:(DE-H253)PIP1087610 |b 2 |
| 700 | 1 | _ | |a Osaka, Taito |0 P:(DE-H253)PIP1023988 |b 3 |
| 700 | 1 | _ | |a Philippi-Kobs, Andre |0 P:(DE-H253)PIP1016584 |b 4 |
| 700 | 1 | _ | |a Mueller, Leonard |0 P:(DE-H253)PIP1010497 |b 5 |
| 700 | 1 | _ | |a Riepp, Matthias |0 P:(DE-H253)PIP1031796 |b 6 |
| 700 | 1 | _ | |a Walther, Michael |0 P:(DE-H253)PIP1005803 |b 7 |
| 700 | 1 | _ | |a Zozulya, Alexey |0 P:(DE-H253)PIP1007378 |b 8 |
| 700 | 1 | _ | |a Bocklage, Lars |0 P:(DE-H253)PIP1016607 |b 9 |
| 700 | 1 | _ | |a Lehmkühler, Felix |0 P:(DE-H253)PIP1008819 |b 10 |
| 700 | 1 | _ | |a Westermeier, Fabian |0 P:(DE-H253)PIP1006002 |b 11 |
| 700 | 1 | _ | |a Weschke, Daniel |0 P:(DE-H253)PIP1016762 |b 12 |
| 700 | 1 | _ | |a Sprung, Michael |0 P:(DE-H253)PIP1007141 |b 13 |
| 700 | 1 | _ | |a Inoue, Ichiro |0 P:(DE-H253)PIP1091862 |b 14 |
| 700 | 1 | _ | |a Yabashi, Makina |0 P:(DE-H253)PIP1108303 |b 15 |
| 700 | 1 | _ | |a Gruebel, Gerhard |0 P:(DE-H253)PIP1000392 |b 16 |
| 773 | 1 | 8 | |a 10.1038/s41598-024-67972-0 |b Springer Science and Business Media LLC |d 2024-07-30 |n 1 |p 17480 |3 journal-article |2 Crossref |t Scientific Reports |v 14 |y 2024 |x 2045-2322 |
| 773 | _ | _ | |a 10.1038/s41598-024-67972-0 |0 PERI:(DE-600)2615211-3 |n 1 |p 17480 |t Scientific reports |v 14 |y 2024 |x 2045-2322 |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/601187/files/HTML-Approval_of_scientific_publication.html |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/601187/files/Internal_review_comments.pdf |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/601187/files/Internal_review_text.pdf |
| 856 | 4 | _ | |y OpenAccess |z StatID:(DE-HGF)0510 |u https://bib-pubdb1.desy.de/record/601187/files/Manuscript%20.pdf |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/601187/files/PDF-Approval_of_scientific_publication.pdf |
| 856 | 4 | _ | |x pdfa |u https://bib-pubdb1.desy.de/record/601187/files/Internal_review_comments.pdf?subformat=pdfa |
| 856 | 4 | _ | |x pdfa |u https://bib-pubdb1.desy.de/record/601187/files/Internal_review_text.pdf?subformat=pdfa |
| 856 | 4 | _ | |y OpenAccess |x pdfa |z StatID:(DE-HGF)0510 |u https://bib-pubdb1.desy.de/record/601187/files/Manuscript%20.pdf?subformat=pdfa |
| 856 | 4 | _ | |y Restricted |z StatID:(DE-HGF)0599 |u https://bib-pubdb1.desy.de/record/601187/files/s41598-024-67972-0.pdf |
| 856 | 4 | _ | |y Restricted |x pdfa |z StatID:(DE-HGF)0599 |u https://bib-pubdb1.desy.de/record/601187/files/s41598-024-67972-0.pdf?subformat=pdfa |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/601187/files/Article%20Approval%20Service.pdf |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/601187/files/Article%20Approval%20Service.pdf?subformat=pdfa |x pdfa |
| 909 | C | O | |o oai:bib-pubdb1.desy.de:601187 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1004234 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 0 |6 P:(DE-H253)PIP1004234 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 1 |6 P:(DE-H253)PIP1024691 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 1 |6 P:(DE-H253)PIP1024691 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1087610 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 2 |6 P:(DE-H253)PIP1087610 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1023988 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1016584 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 4 |6 P:(DE-H253)PIP1016584 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 5 |6 P:(DE-H253)PIP1010497 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 6 |6 P:(DE-H253)PIP1031796 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 6 |6 P:(DE-H253)PIP1031796 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 7 |6 P:(DE-H253)PIP1005803 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 7 |6 P:(DE-H253)PIP1005803 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 8 |6 P:(DE-H253)PIP1007378 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 9 |6 P:(DE-H253)PIP1016607 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 9 |6 P:(DE-H253)PIP1016607 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 10 |6 P:(DE-H253)PIP1008819 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 10 |6 P:(DE-H253)PIP1008819 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 11 |6 P:(DE-H253)PIP1006002 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 11 |6 P:(DE-H253)PIP1006002 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 12 |6 P:(DE-H253)PIP1016762 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 13 |6 P:(DE-H253)PIP1007141 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 13 |6 P:(DE-H253)PIP1007141 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 14 |6 P:(DE-H253)PIP1091862 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 14 |6 P:(DE-H253)PIP1091862 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 15 |6 P:(DE-H253)PIP1108303 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 15 |6 P:(DE-H253)PIP1108303 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 16 |6 P:(DE-H253)PIP1000392 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 0 |
| 914 | 1 | _ | |y 2024 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-24 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-24 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-24 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-24 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-24 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI REP-UK : 2022 |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-07-29T15:28:26Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-07-29T15:28:26Z |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-07-29T15:28:26Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-18 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-18 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-18 |
| 915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
| 915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
| 915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
| 915 | p | c | |a DEAL: Springer Nature 01.01.2024 |2 APC |0 PC:(DE-HGF)0178 |
| 915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
| 920 | 1 | _ | |0 I:(DE-H253)FS-PETRA-S-20210408 |k FS-PETRA-S |l PETRA-S |x 0 |
| 920 | 1 | _ | |0 I:(DE-H253)FS-CXS-20130727 |k FS-CXS |l Coherent X-ray Scattering |x 1 |
| 920 | 1 | _ | |0 I:(DE-H253)FS-SMP-20171124 |k FS-SMP |l Spectroscopy of molecular processes |x 2 |
| 920 | 1 | _ | |0 I:(DE-H253)FS-PS-20131107 |k FS-PS |l FS-Photon Science |x 3 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-H253)FS-PETRA-S-20210408 |
| 980 | _ | _ | |a I:(DE-H253)FS-CXS-20130727 |
| 980 | _ | _ | |a I:(DE-H253)FS-SMP-20171124 |
| 980 | _ | _ | |a I:(DE-H253)FS-PS-20131107 |
| 980 | _ | _ | |a APC |
| 999 | C | 5 | |a 10.1038/nphoton.2010.176 |9 -- missing cx lookup -- |1 P Emma |p 641 - |2 Crossref |u Emma, P. et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photon. 4, 641–647. https://doi.org/10.1038/nphoton.2010.176 (2010). |t Nat. Photon. |v 4 |y 2010 |
| 999 | C | 5 | |a 10.1038/nphoton.2012.141 |9 -- missing cx lookup -- |1 T Ishikawa |p 540 - |2 Crossref |u Ishikawa, T. et al. A compact X-ray free-electron laser emitting in the sub-ångström region. Nat. Photon. 6, 540–544. https://doi.org/10.1038/nphoton.2012.141 (2012). |t Nat. Photon. |v 6 |y 2012 |
| 999 | C | 5 | |a 10.1038/s41566-017-0029-8 |9 -- missing cx lookup -- |1 H-S Kang |p 708 - |2 Crossref |u Kang, H.-S. et al. Hard X-ray free-electron laser with femtosecond-scale timing jitter. Nat. Photon. 11, 708–713. https://doi.org/10.1038/s41566-017-0029-8 (2017). |t Nat. Photon. |v 11 |y 2017 |
| 999 | C | 5 | |a 10.1038/s41566-020-0607-z |1 W Decking |9 -- missing cx lookup -- |2 Crossref |u Decking, W. et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photon.https://doi.org/10.1038/s41566-020-0607-z (2020). |t Nat. Photon. |y 2020 |
| 999 | C | 5 | |a 10.1038/s41566-020-00712-8 |9 -- missing cx lookup -- |1 E Prat |p 748 - |2 Crossref |u Prat, E. et al. A compact and cost-effective hard X-ray free-electron laser driven by a high-brightness and low-energy electron beam. Nat. Photon. 14, 748–754. https://doi.org/10.1038/s41566-020-00712-8 (2020). |t Nat. Photon. |v 14 |y 2020 |
| 999 | C | 5 | |a 10.1038/srep05234 |9 -- missing cx lookup -- |1 F Lehmkühler |p 5234 - |2 Crossref |u Lehmkühler, F. et al. Single shot coherence properties of the free-electron laser SACLA in the hard X-ray regime. Sci. Rep. 4, 5234. https://doi.org/10.1038/srep05234 (2015). |t Sci. Rep. |v 4 |y 2015 |
| 999 | C | 5 | |a 10.1364/OE.21.024647 |9 -- missing cx lookup -- |1 S Lee |p 24647 - |2 Crossref |u Lee, S. et al. Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS. Opt. Express 21, 24647. https://doi.org/10.1364/OE.21.024647 (2013). |t Opt. Express |v 21 |y 2013 |
| 999 | C | 5 | |a 10.1038/nphoton.2010.240 |9 -- missing cx lookup -- |1 HN Chapman |p 833 - |2 Crossref |u Chapman, H. N. & Nugent, K. A. Coherent lensless X-ray imaging. Nat. Photon. 4, 833–839. https://doi.org/10.1038/nphoton.2010.240 (2010). |t Nat. Photon. |v 4 |y 2010 |
| 999 | C | 5 | |a 10.1038/nature09750 |9 -- missing cx lookup -- |1 HN Chapman |p 73 - |2 Crossref |u Chapman, H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77. https://doi.org/10.1038/nature09750 (2011). |t Nature |v 470 |y 2011 |
| 999 | C | 5 | |a 10.1021/nl403247x |9 -- missing cx lookup -- |1 Y Takahashi |p 6028 - |2 Crossref |u Takahashi, Y. et al. Coherent diffraction imaging analysis of shape-controlled nanoparticles with focused Hard X-ray free-electron laser pulses. Nano Lett. 13, 6028–6032. https://doi.org/10.1021/nl403247x (2013). |t Nano Lett. |v 13 |y 2013 |
| 999 | C | 5 | |a 10.1103/physrevlett.112.217203 |9 -- missing cx lookup -- |1 C von Korff Schmising |p 217203 - |2 Crossref |u von Korff Schmising, C. et al. Imaging ultrafast demagnetization dynamics after a spatially localized optical excitation. Phys. Rev. Lett. 112, 217203. https://doi.org/10.1103/physrevlett.112.217203 (2014). |t Phys. Rev. Lett. |v 112 |y 2014 |
| 999 | C | 5 | |a 10.1364/OE.18.027251 |9 -- missing cx lookup -- |1 C Tieg |p 27251 - |2 Crossref |u Tieg, C. et al. Imaging the in-plane magnetization in a Co microstructure by Fourier transform holography. Opt. Express 18, 27251. https://doi.org/10.1364/OE.18.027251 (2010). |t Opt. Express |v 18 |y 2010 |
| 999 | C | 5 | |a 10.1038/s41567-022-01848-w |1 AS Johnson |9 -- missing cx lookup -- |2 Crossref |u Johnson, A. S. et al. Ultrafast X-ray imaging of the light-induced phase transition in VO2. Nat. Phys.https://doi.org/10.1038/s41567-022-01848-w (2022). |t Nat. Phys. |y 2022 |
| 999 | C | 5 | |a 10.1364/OL.3.000027 |9 -- missing cx lookup -- |1 JR Fienup |p 27 - |2 Crossref |u Fienup, J. R. Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett. 3, 27–29. https://doi.org/10.1364/OL.3.000027 (1978). |t Opt. Lett. |v 3 |y 1978 |
| 999 | C | 5 | |a 10.1038/nature03139 |9 -- missing cx lookup -- |1 S Eisebitt |p 885 - |2 Crossref |u Eisebitt, S. et al. Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432, 885–888. https://doi.org/10.1038/nature03139 (2004). |t Nature |v 432 |y 2004 |
| 999 | C | 5 | |a 10.1038/nature06049 |9 -- missing cx lookup -- |1 HN Chapman |p 676 - |2 Crossref |u Chapman, H. N. et al. Femtosecond time-delay X-ray holography. Nature 448, 676–679. https://doi.org/10.1038/nature06049 (2007). |t Nature |v 448 |y 2007 |
| 999 | C | 5 | |a 10.1038/s41566-018-0110-y |9 -- missing cx lookup -- |1 T Gorkhover |p 150 - |2 Crossref |u Gorkhover, T. et al. Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles. Nat. Photon. 12, 150–153. https://doi.org/10.1038/s41566-018-0110-y (2018). |t Nat. Photon. |v 12 |y 2018 |
| 999 | C | 5 | |a 10.1103/PhysRevLett.100.245503 |9 -- missing cx lookup -- |1 L-M Stadler |p 245503 - |2 Crossref |u Stadler, L.-M. et al. Hard X Ray Holographic Diffraction Imaging. Phys. Rev. Lett. 100, 245503. https://doi.org/10.1103/PhysRevLett.100.245503 (2008). |t Phys. Rev. Lett. |v 100 |y 2008 |
| 999 | C | 5 | |a 10.1364/OPTICA.410851 |9 -- missing cx lookup -- |1 K Ayyer |p 15 - |2 Crossref |u Ayyer, K. et al. 3D diffractive imaging of nanoparticle ensembles using an X-ray laser. Optica 8, 15. https://doi.org/10.1364/OPTICA.410851 (2021). |t Optica |v 8 |y 2021 |
| 999 | C | 5 | |a 10.1063/1.2364259 |9 -- missing cx lookup -- |1 WF Schlotter |p 163112 - |2 Crossref |u Schlotter, W. F. et al. Multiple reference Fourier transform holography with soft x rays. Appl. Phys. Lett. 89, 163112. https://doi.org/10.1063/1.2364259 (2006). |t Appl. Phys. Lett. |v 89 |y 2006 |
| 999 | C | 5 | |a 10.1038/s41598-022-06754-y |9 -- missing cx lookup -- |1 F-J Decker |p 3253 - |2 Crossref |u Decker, F.-J. et al. Tunable X-ray free electron laser multi-pulses with nanosecond separation. Sci. Rep. 12, 3253. https://doi.org/10.1038/s41598-022-06754-y (2022). |t Sci. Rep. |v 12 |y 2022 |
| 999 | C | 5 | |a 10.1364/OL.34.001768 |9 -- missing cx lookup -- |1 W Roseker |p 1768 - |2 Crossref |u Roseker, W. et al. Performance of a picosecond X-ray delay line unit at 839 keV. Opt. Lett. 34, 1768. https://doi.org/10.1364/OL.34.001768 (2009). |t Opt. Lett. |v 34 |y 2009 |
| 999 | C | 5 | |a 10.1107/S0909049511004511 |9 -- missing cx lookup -- |1 W Roseker |p 481 - |2 Crossref |u Roseker, W. et al. Development of a hard X-ray delay line for X-ray photon correlation spectroscopy and jitter-free pump-probe experiments at X-ray free-electron laser sources. Journal of Synchrotron Radiation 18, 481–491. https://doi.org/10.1107/S0909049511004511 (2011). |t Journal of Synchrotron Radiation |v 18 |y 2011 |
| 999 | C | 5 | |a 10.1107/S2052252517014014 |1 T Osaka |9 -- missing cx lookup -- |2 Crossref |u Osaka, T. et al. Characterization of temporal coherence of hard X-ray free-electron laser pulses with single-shot interferograms. IUCrJhttps://doi.org/10.1107/S2052252517014014 (2017). |t IUCrJ |y 2017 |
| 999 | C | 5 | |a 10.1063/1.5084635 |9 -- missing cx lookup -- |2 Crossref |u Sun, Y., Robert, A. & Zhu, D. Design of a compact hard X-ray split-delay system based on variable-gap channelcut crystals. In Proceedings of the 12th International Conference on Synchrotron Radiation—SRI2018—SRI2018, 060004. https://doi.org/10.1063/1.5084635 (2019). |
| 999 | C | 5 | |a 10.1107/S1600577519004570 |9 -- missing cx lookup -- |1 R Rysov |p 1052 - |2 Crossref |u Rysov, R., Roseker, W., Walther, M. & Grübel, G. Compact hard X-ray split-and-delay line for studying ultrafast dynamics at free-electron laser sources. J. Synchrotron Radiat. 26, 1052–1057. https://doi.org/10.1107/S1600577519004570 (2019). |t J. Synchrotron Radiat. |v 26 |y 2019 |
| 999 | C | 5 | |a 10.1063/1.5027071 |9 -- missing cx lookup -- |1 W Lu |p 063121 - |2 Crossref |u Lu, W. et al. Development of a hard X-ray split-and-delay line and performance simulations for two-color pump-probe experiments at the European XFEL. Rev. Sci. Instrum. 89, 063121. https://doi.org/10.1063/1.5027071 (2018). |t Rev. Sci. Instrum. |v 89 |y 2018 |
| 999 | C | 5 | |a 10.1038/nphoton.2010.287 |9 -- missing cx lookup -- |1 CM Günther |p 99 - |2 Crossref |u Günther, C. M. et al. Sequential femtosecond X-ray imaging. Nat. Photon. 5, 99–102. https://doi.org/10.1038/nphoton.2010.287 (2011). |t Nat. Photon. |v 5 |y 2011 |
| 999 | C | 5 | |a 10.1038/s41467-018-04178-9 |9 -- missing cx lookup -- |1 W Roseker |p 1704 - |2 Crossref |u Roseker, W. et al. Towards ultrafast dynamics with split-pulse X-ray photon correlation spectroscopy at free electron laser sources. Nat. Commun. 9, 1704. https://doi.org/10.1038/s41467-018-04178-9 (2018). |t Nat. Commun. |v 9 |y 2018 |
| 999 | C | 5 | |a 10.1103/PhysRevResearch.4.L012035 |9 -- missing cx lookup -- |1 T Osaka |p L012035 - |2 Crossref |u Osaka, T. et al. Hard X-ray intensity autocorrelation using direct two-photon absorption. Phys. Rev. Res. 4, L012035. https://doi.org/10.1103/PhysRevResearch.4.L012035 (2022). |t Phys. Rev. Res. |v 4 |y 2022 |
| 999 | C | 5 | |a 10.1038/s41467-020-20036-z |9 -- missing cx lookup -- |1 Y Shinohara |p 6213 - |2 Crossref |u Shinohara, Y. et al. Split-pulse X-ray photon correlation spectroscopy with seeded X-rays from X-ray laser to study atomic-level dynamics. Nat. Commun. 11, 6213. https://doi.org/10.1038/s41467-020-20036-z (2020). |t Nat. Commun. |v 11 |y 2020 |
| 999 | C | 5 | |a 10.1117/12.929759 |9 -- missing cx lookup -- |2 Crossref |u Roseker, W. et al. Hard X-ray delay line for X-ray photon correlation spectroscopy and jitter-free pump-probe experiments at LCLS. 85040I, (San Diego, California, USA, 2012). https://doi.org/10.1117/12.929759. |
| 999 | C | 5 | |a 10.1016/j.jsb.2005.05.009 |9 -- missing cx lookup -- |1 M Van Heel |p 250 - |2 Crossref |u Van Heel, M. & Schatz, M. Fourier shell correlation threshold criteria. J. Struct. Biol. 151, 250–262. https://doi.org/10.1016/j.jsb.2005.05.009 (2005). |t J. Struct. Biol. |v 151 |y 2005 |
| 999 | C | 5 | |a 10.1038/nmeth.2448 |9 -- missing cx lookup -- |1 RPJ Nieuwenhuizen |p 557 - |2 Crossref |u Nieuwenhuizen, R. P. J. et al. Measuring image resolution in optical nanoscopy. Nat. Methods 10, 557–562. https://doi.org/10.1038/nmeth.2448 (2013). |t Nat. Methods |v 10 |y 2013 |
| 999 | C | 5 | |a 10.1088/1742-6596/2380/1/012118 |9 -- missing cx lookup -- |1 W Roseker |p 012118 - |2 Crossref |u Roseker, W. et al. Hard X-ray USAXS Fourier transform holography. J. Phys. Conf. Ser. 2380, 012118. https://doi.org/10.1088/1742-6596/2380/1/012118 (2022). |t J. Phys. Conf. Ser. |v 2380 |y 2022 |
| 999 | C | 5 | |a 10.1063/1.1728320 |9 -- missing cx lookup -- |1 S Eisebitt |p 3373 - |2 Crossref |u Eisebitt, S. et al. Scalable approach for lensless imaging at x-ray wavelengths. Appl. Phys. Lett. 84, 3373–3375. https://doi.org/10.1063/1.1728320 (2004). |t Appl. Phys. Lett. |v 84 |y 2004 |
| 999 | C | 5 | |a 10.1103/PhysRevLett.109.185502 |9 -- missing cx lookup -- |1 SO Hruszkewycz |p 1 - |2 Crossref |u Hruszkewycz, S. O. et al. High contrast X-ray speckle from atomic-scale order in liquids and glasses. Phys. Rev. Lett. 109, 1. https://doi.org/10.1103/PhysRevLett.109.185502 (2012). |t Phys. Rev. Lett. |v 109 |y 2012 |
| 999 | C | 5 | |a 10.1038/srep00057 |9 -- missing cx lookup -- |1 C David |p 57 - |2 Crossref |u David, C. et al. Nanofocusing of hard X-ray free electron laser pulses using diamond based Fresnel zone plates. Sci. Rep. 1, 57. https://doi.org/10.1038/srep00057 (2011). |t Sci. Rep. |v 1 |y 2011 |
| 999 | C | 5 | |a 10.1116/1.4981016 |9 -- missing cx lookup -- |1 MG Stanford |p 030802 - |2 Crossref |u Stanford, M. G., Lewis, B. B., Mahady, K., Fowlkes, J. D. & Rack, P. D. Review Article: Advanced nanoscale patterning and material synthesis with gas field helium and neon ion beams. J. Vacuum Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 35, 030802. https://doi.org/10.1116/1.4981016 (2017). |t J. Vacuum Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. |v 35 |y 2017 |
| 999 | C | 5 | |a 10.1038/nphoton.2008.154 |9 -- missing cx lookup -- |1 S Marchesini |p 560 - |2 Crossref |u Marchesini, S. et al. Massively parallel X-ray holography. Nat. Photon. 2, 560–563. https://doi.org/10.1038/nphoton.2008.154 (2008). |t Nat. Photon. |v 2 |y 2008 |
| 999 | C | 5 | |a 10.1364/OE.15.009954 |9 -- missing cx lookup -- |1 SG Podorov |p 9954 - |2 Crossref |u Podorov, S. G., Pavlov, K. M. & Paganin, D. M. A non-iterative reconstruction method for direct and unambiguous coherent diffractive imaging. Opt. Express 15, 9954. https://doi.org/10.1364/OE.15.009954 (2007). |t Opt. Express |v 15 |y 2007 |
| 999 | C | 5 | |a 10.1038/ncomms5661 |9 -- missing cx lookup -- |1 AV Martin |p 4661 - |2 Crossref |u Martin, A. V. et al. X-ray holography with a customizable reference. Nat. Commun. 5, 4661. https://doi.org/10.1038/ncomms5661 (2014). |t Nat. Commun. |v 5 |y 2014 |
| 999 | C | 5 | |a 10.1364/OE.20.029210 |9 -- missing cx lookup -- |1 S Flewett |p 29210 - |2 Crossref |u Flewett, S. et al. Holographically aided iterative phase retrieval. Opt. Express 20, 29210. https://doi.org/10.1364/OE.20.029210 (2012). |t Opt. Express |v 20 |y 2012 |
| 999 | C | 5 | |a 10.1126/sciadv.aao4641 |9 -- missing cx lookup -- |1 O Kfir |p eaao4641 - |2 Crossref |u Kfir, O. et al. Nanoscale magnetic imaging using circularly polarized high-harmonic radiation. Sci. Adv. 3, eaao4641. https://doi.org/10.1126/sciadv.aao4641 (2017). |t Sci. Adv. |v 3 |y 2017 |
| 999 | C | 5 | |a 10.1038/35065045 |9 -- missing cx lookup -- |1 A Rousse |p 65 - |2 Crossref |u Rousse, A. et al. Non-thermal melting in semiconductors measured at femtosecond resolution. Nature 410, 65–68. https://doi.org/10.1038/35065045 (2001). |t Nature |v 410 |y 2001 |
| 999 | C | 5 | |a 10.1126/science.286.5443.1340 |9 -- missing cx lookup -- |1 CW Siders |p 1340 - |2 Crossref |u Siders, C. W. et al. Detection of nonthermal melting by ultrafast X-ray diffraction. Science 286, 1340–1342. https://doi.org/10.1126/science.286.5443.1340 (1999). |t Science |v 286 |y 1999 |
| 999 | C | 5 | |a 10.1063/1.4952905 |9 -- missing cx lookup -- |2 Crossref |u Kameshima, T. et al. A scintillator fabricated by solid-state diffusion bonding for high spatial resolution X-ray imaging. In Proceedings of the 12th International Conference on Synchrotron Radiation Instrumentation—SRI2015, 040033, (New York, NY USA, 2016). https://doi.org/10.1063/1.4952905 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|