001     601027
005     20250715173256.0
024 7 _ |a 10.1016/j.actamat.2023.119623
|2 doi
024 7 _ |a 1359-6454
|2 ISSN
024 7 _ |a 1873-2453
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2024-00064
|2 datacite_doi
024 7 _ |a altmetric:158356665
|2 altmetric
024 7 _ |a WOS:001152656800001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4390054687
037 _ _ |a PUBDB-2024-00064
041 _ _ |a English
082 _ _ |a 670
100 1 _ |a Sjögren-Levin, Elis
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Grain-level mechanism of plastic deformation in harmonic structure materials revealed by high resolution X-ray diffraction
260 _ _ |a Amsterdam [u.a.]
|c 2024
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1705404001_397835
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Materials with heterogeneous microstructures have been reported to have an attractive combination of strength and ductility. This is attributed to synergistic strengthening effects from the difference in strength of fine- and coarse-grained regions. Understanding the interaction of the regions is crucial for further optimization of the microstructures. In this work, we fabricated nickel of harmonic structure (HS) and a reference with homogenous coarse grains. The HS constitutes of an interconnected fine-grained network that surrounds regions of coarse grains. The interplay of the regions was studied by monitoring Bragg reflections from individual grains in situ during tensile deformation until approximately 2 % strain through synchrotron X-ray diffraction. The technique allows grain-level assessment of the degree of plastic deformation. Two grains were followed in the reference and two small grains (fine-grained region) and two large grains (coarse-grained region) in the HS. Three deformation regimes were identified: elastic deformation, onset of plastic deformation and significant plastic deformation. Our results reveal that the large grains in the harmonic structure onset plastic deformation during the macroscopic elastic stage. With increasing applied stress, the small grains yield plastically also and once a large fraction of the fine-grained network deforms plastically the large grains undergo significant plastic deformation. Notably, the onset of significant plastic deformation of large grains in the HS occurs at approximately 100 MPa higher applied stress than in the grains in the reference. This shows that fine grains constrain the large grains from deforming plastically in the HS.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a FS-Proposal: I-20170726 EC (I-20170726-EC)
|0 G:(DE-H253)I-20170726-EC
|c I-20170726-EC
|x 2
536 _ _ |a SWEDEN-DESY - SWEDEN-DESY Collaboration (2020_Join2-SWEDEN-DESY)
|0 G:(DE-HGF)2020_Join2-SWEDEN-DESY
|c 2020_Join2-SWEDEN-DESY
|x 3
542 _ _ |i 2024-02-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
542 _ _ |i 2023-12-20
|2 Crossref
|u http://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P07
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P07-20150101
|6 EXP:(DE-H253)P-P07-20150101
|x 0
700 1 _ |a Pantleon, Wolfgang
|0 P:(DE-H253)PIP1013398
|b 1
700 1 _ |a Ahadi, Aylin
|0 0000-0001-8524-2698
|b 2
700 1 _ |a Hegedüs, Zoltan
|0 P:(DE-H253)PIP1083297
|b 3
700 1 _ |a Lienert, Ulrich
|0 P:(DE-H253)PIP1016210
|b 4
|u desy
700 1 _ |a Tsuji, Nobuhiro
|0 0000-0002-2132-1327
|b 5
700 1 _ |a Ameyama, Kei
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Orlov, Dmytro
|0 P:(DE-H253)PIP1023989
|b 7
773 1 8 |a 10.1016/j.actamat.2023.119623
|b Elsevier BV
|d 2024-02-01
|p 119623
|3 journal-article
|2 Crossref
|t Acta Materialia
|v 265
|y 2024
|x 1359-6454
773 _ _ |a 10.1016/j.actamat.2023.119623
|g Vol. 265, p. 119623 -
|0 PERI:(DE-600)2014621-8
|p 119623
|t Acta materialia
|v 265
|y 2024
|x 1359-6454
856 4 _ |u https://www.sciencedirect.com/science/article/pii/S1359645423009515?via%3Dihub
856 4 _ |u https://bib-pubdb1.desy.de/record/601027/files/Sj%C3%B6gren-Levin-2024-Grain-level%20mechanism%20of%20pl.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/601027/files/Sj%C3%B6gren-Levin-2024-Grain-level%20mechanism%20of%20pl.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:601027
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1013398
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1083297
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1016210
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1023989
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-31
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA MATER : 2022
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-31
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-31
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACTA MATER : 2022
|d 2024-12-31
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PETRA-D-20210408
|k FS-PETRA-D
|l PETRA-D
|x 1
920 1 _ |0 I:(DE-H253)LUND-20191211
|k LUND
|l Lund University
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PETRA-D-20210408
980 _ _ |a I:(DE-H253)LUND-20191211
980 1 _ |a FullTexts
999 C 5 |a 10.1016/j.pmatsci.2005.08.003
|9 -- missing cx lookup --
|1 Meyers
|p 427 -
|2 Crossref
|t Prog. Mater. Sci.
|v 51
|y 2006
999 C 5 |a 10.1016/j.actamat.2003.08.032
|9 -- missing cx lookup --
|1 Kumar
|p 5743 -
|2 Crossref
|t Acta Mater.
|v 51
|y 2003
999 C 5 |a 10.1016/j.actamat.2012.10.038
|9 -- missing cx lookup --
|1 Estrin
|p 782 -
|2 Crossref
|t Acta Mater.
|v 61
|y 2013
999 C 5 |a 10.1080/21663831.2020.1796836
|9 -- missing cx lookup --
|1 Zhu
|p 1 -
|2 Crossref
|t Mater. Res. Lett.
|v 9
|y 2021
999 C 5 |a 10.1016/j.scriptamat.2020.09.036
|9 -- missing cx lookup --
|1 Li
|p 196 -
|2 Crossref
|t Scr. Mater.
|v 191
|y 2021
999 C 5 |a 10.3390/met10121615
|1 Sharma
|y 2020
|2 Crossref
|t metals
|9 -- missing cx lookup --
999 C 5 |a 10.1016/j.ijplas.2022.103240
|1 Xia
|9 -- missing cx lookup --
|2 Crossref
|t Int. J. Plast.
|v 152
|y 2022
999 C 5 |a 10.1016/j.ijplas.2020.102745
|1 Liang
|9 -- missing cx lookup --
|2 Crossref
|t Int. J. Plast.
|v 132
|y 2020
999 C 5 |a 10.1080/21663831.2016.1218965
|9 -- missing cx lookup --
|1 Vajpai
|p 191 -
|2 Crossref
|t Mater. Res. Lett.
|v 4
|y 2016
999 C 5 |a 10.1080/02670836.2020.1719306
|9 -- missing cx lookup --
|1 Orlov
|p 517 -
|2 Crossref
|t Mater. Sci. Technol.
|v 36
|y 2020
999 C 5 |a 10.1080/21663831.2022.2057203
|9 -- missing cx lookup --
|1 Ameyama
|p 440 -
|2 Crossref
|t Mater. Res. Lett.
|v 10
|y 2022
999 C 5 |1 Considère
|y 1885
|2 Crossref
|o Considère 1885
999 C 5 |a 10.1016/j.scriptamat.2013.12.009
|9 -- missing cx lookup --
|1 Yasnikov
|p 37 -
|2 Crossref
|t Scr. Mater.
|v 76
|y 2014
999 C 5 |a 10.1080/14786437008238426
|9 -- missing cx lookup --
|1 Ashby
|p 399 -
|2 Crossref
|t Philos. Mag. (1798-1977)
|v 21
|y 1970
999 C 5 |a 10.1080/21663831.2018.1439115
|9 -- missing cx lookup --
|1 Park
|p 261 -
|2 Crossref
|t Mater. Res. Lett.
|v 6
|y 2018
999 C 5 |a 10.1016/j.matlet.2020.128126
|1 Orlov
|9 -- missing cx lookup --
|2 Crossref
|t Mater. Lett.
|v 275
|y 2020
999 C 5 |a 10.1038/s41598-021-96930-3
|9 -- missing cx lookup --
|1 Shokry
|p 17445 -
|2 Crossref
|t Sci. Rep.
|v 11
|y 2021
999 C 5 |a 10.1016/j.scriptamat.2022.115186
|1 Sjögren-Levin
|9 -- missing cx lookup --
|2 Crossref
|t Scr. Mater.
|v 226
|y 2023
999 C 5 |a 10.1088/1757-899X/1249/1/012040
|1 Sjögren-Levin
|9 -- missing cx lookup --
|2 Crossref
|t IOP Conf. Ser. Mater. Sci. Eng.
|v 1249
|y 2022
999 C 5 |a 10.1126/science.1124141
|9 -- missing cx lookup --
|1 Jakobsen
|p 889 -
|2 Crossref
|t Science
|v 312
|y 2006
999 C 5 |a 10.1016/j.actamat.2007.01.049
|9 -- missing cx lookup --
|1 Jakobsen
|p 3421 -
|2 Crossref
|t Acta Mater.
|v 55
|y 2007
999 C 5 |a 10.1016/j.msea.2005.03.064
|9 -- missing cx lookup --
|1 Pantleon
|p 118 -
|2 Crossref
|t Mater. Sci. Eng.: A 400-401
|y 2005
999 C 5 |a 10.1016/j.msea.2009.04.008
|9 -- missing cx lookup --
|1 Pantleon
|p 55 -
|2 Crossref
|t Mater. Sci. Eng. A Struct. Mater.
|v 524
|y 2009
999 C 5 |a 10.2320/matertrans.MT-M2019145
|9 -- missing cx lookup --
|1 Nagata
|p 1914 -
|2 Crossref
|t Mater. Trans.
|v 60
|y 2019
999 C 5 |a 10.1088/1742-6596/843/1/012031
|1 Diederichs
|9 -- missing cx lookup --
|2 Crossref
|t J. Phys. Conf. Ser.
|v 843
|y 2017
999 C 5 |1 Pantleon
|y 2010
|2 Crossref
|o Pantleon 2010
999 C 5 |a 10.1007/s11837-012-0504-0
|9 -- missing cx lookup --
|1 Wejdemann
|p 35 -
|2 Crossref
|t JOM
|v 65
|y 2013
999 C 5 |a 10.1088/1757-899X/580/1/012019
|1 Orlov
|9 -- missing cx lookup --
|2 Crossref
|t IOP Conf. Ser. Mater. Sci. Eng.
|v 580
|y 2019
999 C 5 |a 10.1016/j.msea.2006.12.168
|9 -- missing cx lookup --
|1 Jakobsen
|p 641 -
|2 Crossref
|t Mater. Sci. Eng. A 483-484
|y 2008
999 C 5 |1 Wejdemann
|y 2011
|2 Crossref
|o Wejdemann 2011
999 C 5 |1 Wejdemann
|y 2010
|2 Crossref
|o Wejdemann 2010
999 C 5 |2 Crossref
|u B. Jakobsen, In-situ studies of bulk deformation structures: static properties under load and dynamics during deformation, Roskilde University, Roskilde, 2006.
999 C 5 |a 10.1088/1757-899X/580/1/012004
|1 Diederichs
|9 -- missing cx lookup --
|2 Crossref
|t IOP Conf. Ser. Mater. Sci. Eng.
|v 580
|y 2019
999 C 5 |a 10.1088/1757-899X/1249/1/012012
|1 Chatellier
|9 -- missing cx lookup --
|2 Crossref
|t IOP Conf. Ser. Mater. Sci. Eng.
|v 1249
|y 2022
999 C 5 |1 Kocks
|y 2000
|2 Crossref
|o Kocks 2000
999 C 5 |a 10.1016/j.commatsci.2013.11.009
|9 -- missing cx lookup --
|1 Liu
|p 318 -
|2 Crossref
|t Compute. Mater. Sci.
|v 83
|y 2014
999 C 5 |a 10.1016/j.ijplas.2023.103553
|1 Zhang
|9 -- missing cx lookup --
|2 Crossref
|t Int. J. Plast.
|v 163
|y 2023
999 C 5 |a 10.1016/j.ijplas.2022.103246
|1 Keller
|9 -- missing cx lookup --
|2 Crossref
|t Int. J. Plast.
|v 153
|y 2022
999 C 5 |a 10.1080/01418619908214293
|9 -- missing cx lookup --
|1 Beygelzimer
|p 2437 -
|2 Crossref
|t Philos. Mag. A
|v 79
|y 1999


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21