Home > Publications database > PTPN11 Mosaicism Causes a Spectrum of Pigmentary and Vascular Neurocutaneous Disorders and Predisposes to Melanoma > print |
001 | 600684 | ||
005 | 20250724132656.0 | ||
024 | 7 | _ | |a 10.1016/j.jid.2022.09.661 |2 doi |
024 | 7 | _ | |a 0022-202X |2 ISSN |
024 | 7 | _ | |a 1523-1747 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2023-08102 |2 datacite_doi |
024 | 7 | _ | |a altmetric:140669443 |2 altmetric |
024 | 7 | _ | |a pmid:36566878 |2 pmid |
024 | 7 | _ | |a WOS:001010699700001 |2 WOS |
024 | 7 | _ | |a openalex:W4312158445 |2 openalex |
037 | _ | _ | |a PUBDB-2023-08102 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Polubothu, Satyamaanasa |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a PTPN11 Mosaicism Causes a Spectrum of Pigmentary and Vascular Neurocutaneous Disorders and Predisposes to Melanoma |
260 | _ | _ | |a Amsterdam |c 2023 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1728913862_4028549 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Phakomatosis pigmentovascularis is a diagnosis that denotes the coexistence of pigmentary and vascular birthmarks of specific types, accompanied by variable multisystem involvement, including CNS disease, asymmetrical growth, and a predisposition to malignancy. Using a tight phenotypic group and high-depth next-generation sequencing of affected tissues, we discover here clonal mosaic variants in gene PTPN11 encoding SHP2 phosphatase as a cause of phakomatosis pigmentovascularis type III or spilorosea. Within an individual, the same variant is found in distinct pigmentary and vascular birthmarks and is undetectable in blood. We go on to show that the same variants can cause either the pigmentary or vascular phenotypes alone, and drive melanoma development within pigmentary lesions. Protein structure modeling highlights that although variants lead to loss of function at the level of the phosphatase domain, resultant conformational changes promote longer ligand binding. In vitro modeling of the missense variants confirms downstream MAPK pathway overactivation and widespread disruption of human endothelial cell angiogenesis. Importantly, patients with PTPN11 mosaicism theoretically risk passing on the variant to their children as the germline RASopathy Noonan syndrome with lentigines. These findings improve our understanding of the pathogenesis and biology of nevus spilus and capillary malformation syndromes, paving the way for better clinical management. |
536 | _ | _ | |a 899 - ohne Topic (POF4-899) |0 G:(DE-HGF)POF4-899 |c POF4-899 |f POF IV |x 0 |
536 | _ | _ | |a ZF-MEL-CHEMBIO - Chemical Biology in Zebrafish: Drug-Leads and New Targets in the Melanocyte Lineage and Melanoma (648489) |0 G:(EU-Grant)648489 |c 648489 |f ERC-2014-CoG |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Bender, Nicole |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Muthiah, Siobhan |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Zecchin, Davide |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Demetriou, Charalambos |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Martin, Sara Barberan |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Malhotra, Sony |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Travnickova, Jana |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Zeng, Zhiqiang |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Böhm, Markus |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Barbarot, Sebastien |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Cottrell, Catherine |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Davies, Olivia |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Baselga, Eulalia |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Burrows, Nigel P. |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Carmignac, Virginie |0 P:(DE-HGF)0 |b 15 |
700 | 1 | _ | |a Diaz, Joey Santiago |0 P:(DE-HGF)0 |b 16 |
700 | 1 | _ | |a Fink, Christine |0 P:(DE-HGF)0 |b 17 |
700 | 1 | _ | |a Haenssle, Holger A. |0 P:(DE-HGF)0 |b 18 |
700 | 1 | _ | |a Happle, Rudolf |0 P:(DE-HGF)0 |b 19 |
700 | 1 | _ | |a Harland, Mark |0 P:(DE-HGF)0 |b 20 |
700 | 1 | _ | |a Majerowski, Jacquelyn |0 P:(DE-HGF)0 |b 21 |
700 | 1 | _ | |a Vabres, Pierre |0 P:(DE-HGF)0 |b 22 |
700 | 1 | _ | |a Vincent, Marie |0 P:(DE-HGF)0 |b 23 |
700 | 1 | _ | |a Newton-Bishop, Julia A. |0 P:(DE-HGF)0 |b 24 |
700 | 1 | _ | |a Bishop, D. Tim |0 P:(DE-HGF)0 |b 25 |
700 | 1 | _ | |a Siegel, Dawn |0 P:(DE-HGF)0 |b 26 |
700 | 1 | _ | |a Patton, E. Elizabeth |0 P:(DE-HGF)0 |b 27 |
700 | 1 | _ | |a Topf, Maya |0 P:(DE-H253)PIP1094132 |b 28 |
700 | 1 | _ | |a Rajan, Neil |0 P:(DE-HGF)0 |b 29 |
700 | 1 | _ | |a Drolet, Beth |0 P:(DE-HGF)0 |b 30 |
700 | 1 | _ | |a Kinsler, Veronica A. |0 P:(DE-HGF)0 |b 31 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.jid.2022.09.661 |g Vol. 143, no. 6, p. 1042 - 1051.e3 |0 PERI:(DE-600)2006902-9 |n 6 |p 1042 - 1051.e3 |t The journal of investigative dermatology |v 143 |y 2023 |x 0022-202X |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/600684/files/1-s2.0-S0022202X22028913-main.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/600684/files/1-s2.0-S0022202X22028913-main.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:600684 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 28 |6 P:(DE-H253)PIP1094132 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 28 |6 P:(DE-H253)PIP1094132 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-22 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J INVEST DERMATOL : 2022 |d 2023-10-22 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-10-22 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-22 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J INVEST DERMATOL : 2022 |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-22 |
920 | 1 | _ | |0 I:(DE-H253)CSSB-LIV_UKE-MT-20220525 |k CSSB-LIV/UKE-MT |l CSSB - Leibniz-Institut für Experimentelle Virologie (LIV) / UKE - Maya Topf |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)CSSB-LIV_UKE-MT-20220525 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|