Home > Publications database > Integrating model simulation tools and cryo‐electron microscopy > print |
001 | 600655 | ||
005 | 20250724132655.0 | ||
024 | 7 | _ | |a 10.1002/wcms.1642 |2 doi |
024 | 7 | _ | |a 1759-0876 |2 ISSN |
024 | 7 | _ | |a 1759-0884 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2023-08078 |2 datacite_doi |
024 | 7 | _ | |a altmetric:138788761 |2 altmetric |
024 | 7 | _ | |a WOS:000888382800001 |2 WOS |
024 | 7 | _ | |a openalex:W4309778139 |2 openalex |
037 | _ | _ | |a PUBDB-2023-08078 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Beton, Joseph |0 P:(DE-H253)PIP1095943 |b 0 |
245 | _ | _ | |a Integrating model simulation tools and cryo‐electron microscopy |
260 | _ | _ | |a Malden, MA |c 2023 |b Wiley-Blackwell |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1728908250_4051395 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The power of computer simulations, including machine-learning, has become an inseparable part of scientific analysis of biological data. This has significantly impacted the field of cryogenic electron microscopy (cryo-EM), which has grown dramatically since the “resolution-revolution.” Many maps are now solved at 3–4 Å or better resolution, although a significant proportion of maps deposited in the Electron Microscopy Data Bank are still at lower resolution, where the positions of atoms cannot be determined unambiguously. Additionally, cryo-EM maps are often characterized by a varying local resolution, partly due to conformational heterogeneity of the imaged molecule. To address such problems, many computational methods have been developed for cryo-EM map reconstruction and atomistic model building. Here, we review the development in algorithms and tools for building models in cryo-EM maps at different resolutions. We describe methods for model building, including rigid and flexible fitting of known models, model validation, small-molecule fitting, and model visualization. We provide examples of how these methods have been used to elucidate the structure and function of dynamic macromolecular machines.This article is categorized under: Structure and Mechanism > Molecular Structures Structure and Mechanism > Computational Biochemistry and Biophysics Software > Molecular Modeling |
536 | _ | _ | |a 899 - ohne Topic (POF4-899) |0 G:(DE-HGF)POF4-899 |c POF4-899 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Cragnolini, Tristan |0 P:(DE-H253)PIP1096737 |b 1 |
700 | 1 | _ | |a Kaleel, Manaz |0 P:(DE-H253)PIP1094807 |b 2 |
700 | 1 | _ | |a Mulvaney, Thomas |0 P:(DE-H253)PIP1098630 |b 3 |
700 | 1 | _ | |a Sweeney, Aaron |0 P:(DE-H253)PIP1100083 |b 4 |
700 | 1 | _ | |a Topf, Maya |0 P:(DE-H253)PIP1094132 |b 5 |e Corresponding author |
773 | _ | _ | |a 10.1002/wcms.1642 |g Vol. 13, no. 3, p. e1642 |0 PERI:(DE-600)2599565-0 |n 3 |p e1642 |t Wiley interdisciplinary reviews / Computational Molecular Science |v 13 |y 2023 |x 1759-0876 |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/600655/files/WIREs%20Comput%20Mol%20Sci%20-%202022%20-%20Beton%20-%20Integrating%20model%20simulation%20tools%20and%20cryo%E2%80%90electron%20microscopy.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/600655/files/WIREs%20Comput%20Mol%20Sci%20-%202022%20-%20Beton%20-%20Integrating%20model%20simulation%20tools%20and%20cryo%E2%80%90electron%20microscopy.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:600655 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 0 |6 P:(DE-H253)PIP1095943 |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 1 |6 P:(DE-H253)PIP1096737 |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 2 |6 P:(DE-H253)PIP1094807 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1094807 |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 3 |6 P:(DE-H253)PIP1098630 |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 4 |6 P:(DE-H253)PIP1100083 |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 5 |6 P:(DE-H253)PIP1094132 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1094132 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-26 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-26 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b WIRES COMPUT MOL SCI : 2022 |d 2023-10-26 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2023-10-26 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-26 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-26 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b WIRES COMPUT MOL SCI : 2022 |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-26 |
920 | 1 | _ | |0 I:(DE-H253)CSSB-LIV_UKE-MT-20220525 |k CSSB-LIV/UKE-MT |l CSSB - Leibniz-Institut für Experimentelle Virologie (LIV) / UKE - Maya Topf |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)CSSB-LIV_UKE-MT-20220525 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|