001     600655
005     20250724132655.0
024 7 _ |a 10.1002/wcms.1642
|2 doi
024 7 _ |a 1759-0876
|2 ISSN
024 7 _ |a 1759-0884
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2023-08078
|2 datacite_doi
024 7 _ |a altmetric:138788761
|2 altmetric
024 7 _ |a WOS:000888382800001
|2 WOS
024 7 _ |a openalex:W4309778139
|2 openalex
037 _ _ |a PUBDB-2023-08078
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Beton, Joseph
|0 P:(DE-H253)PIP1095943
|b 0
245 _ _ |a Integrating model simulation tools and cryo‐electron microscopy
260 _ _ |a Malden, MA
|c 2023
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1728908250_4051395
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The power of computer simulations, including machine-learning, has become an inseparable part of scientific analysis of biological data. This has significantly impacted the field of cryogenic electron microscopy (cryo-EM), which has grown dramatically since the “resolution-revolution.” Many maps are now solved at 3–4 Å or better resolution, although a significant proportion of maps deposited in the Electron Microscopy Data Bank are still at lower resolution, where the positions of atoms cannot be determined unambiguously. Additionally, cryo-EM maps are often characterized by a varying local resolution, partly due to conformational heterogeneity of the imaged molecule. To address such problems, many computational methods have been developed for cryo-EM map reconstruction and atomistic model building. Here, we review the development in algorithms and tools for building models in cryo-EM maps at different resolutions. We describe methods for model building, including rigid and flexible fitting of known models, model validation, small-molecule fitting, and model visualization. We provide examples of how these methods have been used to elucidate the structure and function of dynamic macromolecular machines.This article is categorized under: Structure and Mechanism > Molecular Structures Structure and Mechanism > Computational Biochemistry and Biophysics Software > Molecular Modeling
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Cragnolini, Tristan
|0 P:(DE-H253)PIP1096737
|b 1
700 1 _ |a Kaleel, Manaz
|0 P:(DE-H253)PIP1094807
|b 2
700 1 _ |a Mulvaney, Thomas
|0 P:(DE-H253)PIP1098630
|b 3
700 1 _ |a Sweeney, Aaron
|0 P:(DE-H253)PIP1100083
|b 4
700 1 _ |a Topf, Maya
|0 P:(DE-H253)PIP1094132
|b 5
|e Corresponding author
773 _ _ |a 10.1002/wcms.1642
|g Vol. 13, no. 3, p. e1642
|0 PERI:(DE-600)2599565-0
|n 3
|p e1642
|t Wiley interdisciplinary reviews / Computational Molecular Science
|v 13
|y 2023
|x 1759-0876
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/600655/files/WIREs%20Comput%20Mol%20Sci%20-%202022%20-%20Beton%20-%20Integrating%20model%20simulation%20tools%20and%20cryo%E2%80%90electron%20microscopy.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/600655/files/WIREs%20Comput%20Mol%20Sci%20-%202022%20-%20Beton%20-%20Integrating%20model%20simulation%20tools%20and%20cryo%E2%80%90electron%20microscopy.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:600655
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 0
|6 P:(DE-H253)PIP1095943
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 1
|6 P:(DE-H253)PIP1096737
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 2
|6 P:(DE-H253)PIP1094807
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1094807
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 3
|6 P:(DE-H253)PIP1098630
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 4
|6 P:(DE-H253)PIP1100083
910 1 _ |a Centre for Structural Systems Biology
|0 I:(DE-H253)_CSSB-20140311
|k CSSB
|b 5
|6 P:(DE-H253)PIP1094132
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1094132
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-26
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b WIRES COMPUT MOL SCI : 2022
|d 2023-10-26
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b WIRES COMPUT MOL SCI : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
920 1 _ |0 I:(DE-H253)CSSB-LIV_UKE-MT-20220525
|k CSSB-LIV/UKE-MT
|l CSSB - Leibniz-Institut für Experimentelle Virologie (LIV) / UKE - Maya Topf
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)CSSB-LIV_UKE-MT-20220525
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21