TY  - JOUR
AU  - Schroeder, Chris
AU  - Albert, Félicie
AU  - Benedetti, Marc
AU  - Bromage, Jake
AU  - Bruhwiler, D.
AU  - Bulanov, S. S.
AU  - Campbell, Graeme
AU  - Cook, Cameron John
AU  - Cros, Brigitte
AU  - Downer, M. C.
AU  - Esarey, E.
AU  - Froula, D. H.
AU  - Fuchs, Maximilian
AU  - Geddes, C. G. R.
AU  - Gessner, S. J.
AU  - Gonsalves, Anthony Joseph
AU  - Hogan, M. J.
AU  - Hooker, Simon
AU  - Huebl, A.
AU  - Jing, C.
AU  - Joshi, Suresh Chandra
AU  - Krushelnick, Karl
AU  - Leemans, W. P.
AU  - Lehe, R.
AU  - Maier, Andre
AU  - Milchberg, H. M.
AU  - Mori, W. B.
AU  - Nakamura, Katsuro
AU  - Osterhoff, J.
AU  - Palastro, J. P.
AU  - Palmer, M.
AU  - Poder, K.
AU  - Power, J. G.
AU  - Shadwick, B. A.
AU  - Terzani, D.
AU  - Thevenet, M.
AU  - Thomas, Andrew
AU  - van Tilborg, Jeroen
AU  - Turner, M.
AU  - Vafaei-Najafabadi, N.
AU  - Vay, J.-L.
AU  - Zhou, Tao
AU  - Zuegel, J.
TI  - Linear colliders based on laser-plasma accelerators
JO  - Journal of Instrumentation
VL  - 18
IS  - 06
SN  - 1748-0221
CY  - London
PB  - Inst. of Physics
M1  - PUBDB-2023-07965
M1  - arXiv:2203.08366
SP  - T06001
PY  - 2023
N1  - Contribution to Snowmass 2021, Accelerator Frontier
AB  - Laser-plasma accelerators are capable of sustainingaccelerating fields of 10–100 GeV/m, 100–1000 times that ofconventional technology and the highest fields produced by any ofthe widely researched advanced accelerator concepts. Laser-plasmaaccelerators also intrinsically accelerate short particle bunches,several orders of magnitude shorter than that of conventionaltechnology, which leads to reductions in beamstrahlung and, hence,savings in the overall power consumption to reach a desiredluminosity. These properties make laser-plasma accelerators apromising accelerator technology for a more compact, less expensivehigh-energy linear collider providing multi-TeV polarized leptons.In this submission to the Snowmass 2021 Accelerator Frontier, wediscuss the motivation for a laser-plasma-accelerator-based linearcollider, the status of the field, and potential linear colliderconcepts up to 15 TeV. We outline the research and developmentpath toward a collider based on laser-plasma accelerator technology,and highlight near-term and mid-term applications of this technologyon the collider development path. The required experimentalfacilities to carry out this research are described. We concludewith community recommendations developed during Snowmass.
T2  - Snowmass 2021
CY  - 17 Jul 2022 - 26 Jul 2022, Seattle (United States)
Y2  - 17 Jul 2022 - 26 Jul 2022
M2  - Seattle, United States
KW  - Accelerator Applications (autogen)
KW  - Wake-field acceleration (laser-driven, electron-driven) (autogen)
LB  - PUB:(DE-HGF)8 ; PUB:(DE-HGF)16
UR  - <Go to ISI:>//WOS:001026537200006
DO  - DOI:10.1088/1748-0221/18/06/T06001
UR  - https://bib-pubdb1.desy.de/record/600408
ER  -