001     600286
005     20250728212114.0
024 7 _ |a 10.1103/PhysRevAccelBeams.27.054601
|2 doi
024 7 _ |a 10.3204/PUBDB-2023-07854
|2 datacite_doi
024 7 _ |a arXiv:2401.05815
|2 arXiv
024 7 _ |a altmetric:158338580
|2 altmetric
024 7 _ |a WOS:001237562300003
|2 WOS
024 7 _ |2 openalex
|a openalex:W4399072168
037 _ _ |a PUBDB-2023-07854
041 _ _ |a English
082 _ _ |a 530
088 _ _ |a arXiv:2401.05815
|2 arXiv
100 1 _ |a Kaiser, Jan
|0 P:(DE-H253)PIP1095111
|b 0
|e Corresponding author
|u desy
245 _ _ |a Bridging the gap between machine learning and particle accelerator physics with high-speed, differentiable simulations
260 _ _ |a College Park, MD
|c 2024
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1717145400_919014
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Phys. Rev. Accel. Beams 27 (2024) 054601. 16 pages, 9 figures, 3 tables
520 _ _ |a Machine learning has emerged as a powerful solution to the modern challenges in accelerator physics. However, the limited availability of beam time, the computational cost of simulations, and the high dimensionality of optimization problems pose significant challenges in generating the required data for training state-of-the-art machine learning models. In this work, we introduce cheetah, a pytorch-based high-speed differentiable linear beam dynamics code. cheetah enables the fast collection of large datasets by reducing computation times by multiple orders of magnitude and facilitates efficient gradient-based optimization for accelerator tuning and system identification. This positions cheetah as a user-friendly, readily extensible tool that integrates seamlessly with widely adopted machine learning tools. We showcase the utility of cheetah through five examples, including reinforcement learning training, gradient-based beamline tuning, gradient-based system identification, physics-informed Bayesian optimization priors, and modular neural network surrogate modeling of space charge effects. The use of such a high-speed differentiable simulation code will simplify the development of machine learning-based methods for particle accelerators and fast-track their integration into everyday operations of accelerator facilities.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
536 _ _ |a InternLabs-0011 - HIR3X - Helmholtz International Laboratory on Reliability, Repetition, Results at the most advanced X-ray Sources (2020_InternLabs-0011)
|0 G:(DE-HGF)2020_InternLabs-0011
|c 2020_InternLabs-0011
|x 1
536 _ _ |a ZT-I-PF-5-6 - Autonomous Accelerator (AA) (2020_ZT-I-PF-5-6)
|0 G:(DE-HGF)2020_ZT-I-PF-5-6
|c 2020_ZT-I-PF-5-6
|x 2
542 _ _ |i 2024-05-28
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
650 _ 7 |a space charge
|2 INSPIRE
650 _ 7 |a accelerator
|2 INSPIRE
650 _ 7 |a machine learning
|2 INSPIRE
650 _ 7 |a optimization
|2 INSPIRE
650 _ 7 |a reinforcement learning
|2 INSPIRE
650 _ 7 |a modular
|2 INSPIRE
650 _ 7 |a Bayesian
|2 INSPIRE
650 _ 7 |a neural network
|2 INSPIRE
693 _ _ |a SINBAD
|e Accelerator Research Experiment at SINBAD
|1 EXP:(DE-H253)SINBAD-20200101
|0 EXP:(DE-H253)ARES-20200101
|5 EXP:(DE-H253)ARES-20200101
|x 0
700 1 _ |a Xu, Chenran
|b 1
700 1 _ |a Eichler, Annika
|0 P:(DE-H253)PIP1087213
|b 2
700 1 _ |a Santamaria Garcia, Andrea
|b 3
773 1 8 |a 10.1103/physrevaccelbeams.27.054601
|b American Physical Society (APS)
|d 2024-05-28
|n 5
|p 054601
|3 journal-article
|2 Crossref
|t Physical Review Accelerators and Beams
|v 27
|y 2024
|x 2469-9888
773 _ _ |a 10.1103/PhysRevAccelBeams.27.054601
|g Vol. 27, no. 5, p. 054601
|0 PERI:(DE-600)2844143-6
|n 5
|p 054601
|t Physical review accelerators and beams
|v 27
|y 2024
|x 2469-9888
787 0 _ |a Kaiser, Jan et.al.
|d 2024
|i IsParent
|0 PUBDB-2024-01950
|r arXiv:2401.05815
|t Bridging the gap between machine learning and particle accelerator physics with high-speed, differentiable simulations
856 4 _ |u https://bib-pubdb1.desy.de/record/600286/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/600286/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |y Restricted
|z StatID:(DE-HGF)0599
|u https://bib-pubdb1.desy.de/record/600286/files/PhysRevAccelBeams.27.054601.pdf
856 4 _ |y OpenAccess
|z StatID:(DE-HGF)0510
|u https://bib-pubdb1.desy.de/record/600286/files/post-referee%20version.pdf
856 4 _ |y OpenAccess
|x pdfa
|z StatID:(DE-HGF)0510
|u https://bib-pubdb1.desy.de/record/600286/files/post-referee%20version.pdf?subformat=pdfa
856 4 _ |y Restricted
|x pdfa
|z StatID:(DE-HGF)0599
|u https://bib-pubdb1.desy.de/record/600286/files/PhysRevAccelBeams.27.054601.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:600286
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1095111
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1087213
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 2
|6 P:(DE-H253)PIP1087213
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-14T15:01:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-14T15:01:02Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-10-14T15:01:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV ACCEL BEAMS : 2022
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-28
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 1 _ |0 I:(DE-H253)MSK-20120731
|k MSK
|l Strahlkontrollen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)MSK-20120731
980 _ _ |a APC
999 C 5 |1 J. Kaiser
|y 2022
|2 Crossref
|t Proceedings of the 39th International Conference on Machine Learning (ICML-2022), Baltimore, Maryland
|o J. Kaiser Proceedings of the 39th International Conference on Machine Learning (ICML-2022), Baltimore, Maryland 2022
999 C 5 |1 A. L. Edelen
|y 2017
|2 Crossref
|t Proceedings of the 38th International Free-Electron Laser Conference, FEL 2017
|o A. L. Edelen Proceedings of the 38th International Free-Electron Laser Conference, FEL 2017 2017
999 C 5 |a 10.1109/ACCESS.2021.3132942
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 C. Xu
|y 2023
|2 Crossref
|t Proceedings of the 14th International Particle Accelerator Conference, IPAC-2023, Venice, Italy
|o C. Xu Proceedings of the 14th International Particle Accelerator Conference, IPAC-2023, Venice, Italy 2023
999 C 5 |a 10.1103/PhysRevAccelBeams.23.124801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41586-021-04301-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41586-019-1724-z
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.nima.2014.09.057
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 S. Tomin
|y 2017
|2 Crossref
|t Proceedings of the 8th International Particle Accelerator Conference, IPAC-2017, Copenhagen, Denmark
|o S. Tomin Proceedings of the 8th International Particle Accelerator Conference, IPAC-2017, Copenhagen, Denmark 2017
999 C 5 |1 Z. Zhang
|y 2022
|2 Crossref
|t Proceedings of the 13th International Particle Accelerator Conference, IPAC-2022, Bangkok, Thailand
|o Z. Zhang Proceedings of the 13th International Particle Accelerator Conference, IPAC-2022, Bangkok, Thailand 2022
999 C 5 |1 A. Paszke
|y 2019
|2 Crossref
|t Advances in Neural Information Processing Systems 32
|o A. Paszke Advances in Neural Information Processing Systems 32 2019
999 C 5 |a 10.1016/j.nima.2005.11.001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 M. Borland
|y 2000
|2 Crossref
|t Proceedings of the 6th International Computational Accelerator Physics Conference, Darmstadt, Germany
|o M. Borland Proceedings of the 6th International Computational Accelerator Physics Conference, Darmstadt, Germany 2000
999 C 5 |1 J. Gonzalez-Aguilera
|y 2023
|2 Crossref
|t Proceedings of the 14th International Particle Accelerator Conference, IPAC-2023, Venice, Italy
|o J. Gonzalez-Aguilera Proceedings of the 14th International Particle Accelerator Conference, IPAC-2023, Venice, Italy 2023
999 C 5 |a 10.1103/PhysRevApplied.16.024005
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevAccelBeams.25.094601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.121.044801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41598-021-98785-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.revip.2023.100085
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1364/OE.432488
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.128.204801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.130.145001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevAccelBeams.26.024601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 O. Stein
|y 2022
|2 Crossref
|t Proceedings of the 13th International Particle Accelerator Conference IPAC-2022, Bangkok, Thailand
|o O. Stein Proceedings of the 13th International Particle Accelerator Conference IPAC-2022, Bangkok, Thailand 2022
999 C 5 |1 J. Tobin
|y 2017
|2 Crossref
|t Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS-2017
|o J. Tobin Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS-2017 2017
999 C 5 |1 K. L. Brown
|y 1968
|2 Crossref
|o K. L. Brown 1968
999 C 5 |a 10.1103/PhysRevE.49.1599
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.3390/instruments5030028
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 F. Burkart
|y 2022
|2 Crossref
|t Proceedings of the 31st International Linear Accelerator Conference (LINAC’22), Liverpool, UK
|o F. Burkart Proceedings of the 31st International Linear Accelerator Conference (LINAC’22), Liverpool, UK 2022
999 C 5 |1 A. Eichler
|y 2021
|2 Crossref
|t Proceedings of the 12th International Particle Accelerator Conference, IPAC-2021, Campinas, SP, Brazil
|o A. Eichler Proceedings of the 12th International Particle Accelerator Conference, IPAC-2021, Campinas, SP, Brazil 2021
999 C 5 |1 A. Raffin
|y 2021
|2 Crossref
|o A. Raffin 2021
999 C 5 |a 10.1109/JPROC.2015.2494218
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.124.124801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 K. Hwang
|y 2022
|2 Crossref
|t Proceedings of the 13th International Particle Accelerator Conference, IPAC-2022, Bangkok, Thailand
|o K. Hwang Proceedings of the 13th International Particle Accelerator Conference, IPAC-2022, Bangkok, Thailand 2022
999 C 5 |1 M. Balandat
|y 2020
|2 Crossref
|t Advances in Neural Information Processing Systems 33: 34th Annual Conference on Neural Information Processing Systems (NeurIPS-2020)
|o M. Balandat Advances in Neural Information Processing Systems 33: 34th Annual Conference on Neural Information Processing Systems (NeurIPS-2020) 2020
999 C 5 |1 R. Roussel
|y 2023
|2 Crossref
|t Proceedings of the 14th International Particle Accelerator Conference, IPAC-2023, Venice, Italy
|o R. Roussel Proceedings of the 14th International Particle Accelerator Conference, IPAC-2023, Venice, Italy 2023


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21