Home > Publications database > Bridging the gap between machine learning and particle accelerator physics with high-speed, differentiable simulations > print |
001 | 600286 | ||
005 | 20250728212114.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevAccelBeams.27.054601 |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2023-07854 |2 datacite_doi |
024 | 7 | _ | |a arXiv:2401.05815 |2 arXiv |
024 | 7 | _ | |a altmetric:158338580 |2 altmetric |
024 | 7 | _ | |a WOS:001237562300003 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4399072168 |
037 | _ | _ | |a PUBDB-2023-07854 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
088 | _ | _ | |a arXiv:2401.05815 |2 arXiv |
100 | 1 | _ | |a Kaiser, Jan |0 P:(DE-H253)PIP1095111 |b 0 |e Corresponding author |u desy |
245 | _ | _ | |a Bridging the gap between machine learning and particle accelerator physics with high-speed, differentiable simulations |
260 | _ | _ | |a College Park, MD |c 2024 |b American Physical Society |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1717145400_919014 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Phys. Rev. Accel. Beams 27 (2024) 054601. 16 pages, 9 figures, 3 tables |
520 | _ | _ | |a Machine learning has emerged as a powerful solution to the modern challenges in accelerator physics. However, the limited availability of beam time, the computational cost of simulations, and the high dimensionality of optimization problems pose significant challenges in generating the required data for training state-of-the-art machine learning models. In this work, we introduce cheetah, a pytorch-based high-speed differentiable linear beam dynamics code. cheetah enables the fast collection of large datasets by reducing computation times by multiple orders of magnitude and facilitates efficient gradient-based optimization for accelerator tuning and system identification. This positions cheetah as a user-friendly, readily extensible tool that integrates seamlessly with widely adopted machine learning tools. We showcase the utility of cheetah through five examples, including reinforcement learning training, gradient-based beamline tuning, gradient-based system identification, physics-informed Bayesian optimization priors, and modular neural network surrogate modeling of space charge effects. The use of such a high-speed differentiable simulation code will simplify the development of machine learning-based methods for particle accelerators and fast-track their integration into everyday operations of accelerator facilities. |
536 | _ | _ | |a 621 - Accelerator Research and Development (POF4-621) |0 G:(DE-HGF)POF4-621 |c POF4-621 |f POF IV |x 0 |
536 | _ | _ | |a InternLabs-0011 - HIR3X - Helmholtz International Laboratory on Reliability, Repetition, Results at the most advanced X-ray Sources (2020_InternLabs-0011) |0 G:(DE-HGF)2020_InternLabs-0011 |c 2020_InternLabs-0011 |x 1 |
536 | _ | _ | |a ZT-I-PF-5-6 - Autonomous Accelerator (AA) (2020_ZT-I-PF-5-6) |0 G:(DE-HGF)2020_ZT-I-PF-5-6 |c 2020_ZT-I-PF-5-6 |x 2 |
542 | _ | _ | |i 2024-05-28 |2 Crossref |u https://creativecommons.org/licenses/by/4.0/ |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
650 | _ | 7 | |a space charge |2 INSPIRE |
650 | _ | 7 | |a accelerator |2 INSPIRE |
650 | _ | 7 | |a machine learning |2 INSPIRE |
650 | _ | 7 | |a optimization |2 INSPIRE |
650 | _ | 7 | |a reinforcement learning |2 INSPIRE |
650 | _ | 7 | |a modular |2 INSPIRE |
650 | _ | 7 | |a Bayesian |2 INSPIRE |
650 | _ | 7 | |a neural network |2 INSPIRE |
693 | _ | _ | |a SINBAD |e Accelerator Research Experiment at SINBAD |1 EXP:(DE-H253)SINBAD-20200101 |0 EXP:(DE-H253)ARES-20200101 |5 EXP:(DE-H253)ARES-20200101 |x 0 |
700 | 1 | _ | |a Xu, Chenran |b 1 |
700 | 1 | _ | |a Eichler, Annika |0 P:(DE-H253)PIP1087213 |b 2 |
700 | 1 | _ | |a Santamaria Garcia, Andrea |b 3 |
773 | 1 | 8 | |a 10.1103/physrevaccelbeams.27.054601 |b American Physical Society (APS) |d 2024-05-28 |n 5 |p 054601 |3 journal-article |2 Crossref |t Physical Review Accelerators and Beams |v 27 |y 2024 |x 2469-9888 |
773 | _ | _ | |a 10.1103/PhysRevAccelBeams.27.054601 |g Vol. 27, no. 5, p. 054601 |0 PERI:(DE-600)2844143-6 |n 5 |p 054601 |t Physical review accelerators and beams |v 27 |y 2024 |x 2469-9888 |
787 | 0 | _ | |a Kaiser, Jan et.al. |d 2024 |i IsParent |0 PUBDB-2024-01950 |r arXiv:2401.05815 |t Bridging the gap between machine learning and particle accelerator physics with high-speed, differentiable simulations |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/600286/files/HTML-Approval_of_scientific_publication.html |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/600286/files/PDF-Approval_of_scientific_publication.pdf |
856 | 4 | _ | |y Restricted |z StatID:(DE-HGF)0599 |u https://bib-pubdb1.desy.de/record/600286/files/PhysRevAccelBeams.27.054601.pdf |
856 | 4 | _ | |y OpenAccess |z StatID:(DE-HGF)0510 |u https://bib-pubdb1.desy.de/record/600286/files/post-referee%20version.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |z StatID:(DE-HGF)0510 |u https://bib-pubdb1.desy.de/record/600286/files/post-referee%20version.pdf?subformat=pdfa |
856 | 4 | _ | |y Restricted |x pdfa |z StatID:(DE-HGF)0599 |u https://bib-pubdb1.desy.de/record/600286/files/PhysRevAccelBeams.27.054601.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:600286 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1095111 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1087213 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 2 |6 P:(DE-H253)PIP1087213 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Materie und Technologie |1 G:(DE-HGF)POF4-620 |0 G:(DE-HGF)POF4-621 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Accelerator Research and Development |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-10-14T15:01:02Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-10-14T15:01:02Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2021-10-14T15:01:02Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-27 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV ACCEL BEAMS : 2022 |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-28 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-28 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
920 | 1 | _ | |0 I:(DE-H253)MSK-20120731 |k MSK |l Strahlkontrollen |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)MSK-20120731 |
980 | _ | _ | |a APC |
999 | C | 5 | |1 J. Kaiser |y 2022 |2 Crossref |t Proceedings of the 39th International Conference on Machine Learning (ICML-2022), Baltimore, Maryland |o J. Kaiser Proceedings of the 39th International Conference on Machine Learning (ICML-2022), Baltimore, Maryland 2022 |
999 | C | 5 | |1 A. L. Edelen |y 2017 |2 Crossref |t Proceedings of the 38th International Free-Electron Laser Conference, FEL 2017 |o A. L. Edelen Proceedings of the 38th International Free-Electron Laser Conference, FEL 2017 2017 |
999 | C | 5 | |a 10.1109/ACCESS.2021.3132942 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 C. Xu |y 2023 |2 Crossref |t Proceedings of the 14th International Particle Accelerator Conference, IPAC-2023, Venice, Italy |o C. Xu Proceedings of the 14th International Particle Accelerator Conference, IPAC-2023, Venice, Italy 2023 |
999 | C | 5 | |a 10.1103/PhysRevAccelBeams.23.124801 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41586-021-04301-9 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41586-019-1724-z |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.nima.2014.09.057 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 S. Tomin |y 2017 |2 Crossref |t Proceedings of the 8th International Particle Accelerator Conference, IPAC-2017, Copenhagen, Denmark |o S. Tomin Proceedings of the 8th International Particle Accelerator Conference, IPAC-2017, Copenhagen, Denmark 2017 |
999 | C | 5 | |1 Z. Zhang |y 2022 |2 Crossref |t Proceedings of the 13th International Particle Accelerator Conference, IPAC-2022, Bangkok, Thailand |o Z. Zhang Proceedings of the 13th International Particle Accelerator Conference, IPAC-2022, Bangkok, Thailand 2022 |
999 | C | 5 | |1 A. Paszke |y 2019 |2 Crossref |t Advances in Neural Information Processing Systems 32 |o A. Paszke Advances in Neural Information Processing Systems 32 2019 |
999 | C | 5 | |a 10.1016/j.nima.2005.11.001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 M. Borland |y 2000 |2 Crossref |t Proceedings of the 6th International Computational Accelerator Physics Conference, Darmstadt, Germany |o M. Borland Proceedings of the 6th International Computational Accelerator Physics Conference, Darmstadt, Germany 2000 |
999 | C | 5 | |1 J. Gonzalez-Aguilera |y 2023 |2 Crossref |t Proceedings of the 14th International Particle Accelerator Conference, IPAC-2023, Venice, Italy |o J. Gonzalez-Aguilera Proceedings of the 14th International Particle Accelerator Conference, IPAC-2023, Venice, Italy 2023 |
999 | C | 5 | |a 10.1103/PhysRevApplied.16.024005 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevAccelBeams.25.094601 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.121.044801 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41598-021-98785-0 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.revip.2023.100085 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1364/OE.432488 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.128.204801 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.130.145001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevAccelBeams.26.024601 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 O. Stein |y 2022 |2 Crossref |t Proceedings of the 13th International Particle Accelerator Conference IPAC-2022, Bangkok, Thailand |o O. Stein Proceedings of the 13th International Particle Accelerator Conference IPAC-2022, Bangkok, Thailand 2022 |
999 | C | 5 | |1 J. Tobin |y 2017 |2 Crossref |t Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS-2017 |o J. Tobin Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS-2017 2017 |
999 | C | 5 | |1 K. L. Brown |y 1968 |2 Crossref |o K. L. Brown 1968 |
999 | C | 5 | |a 10.1103/PhysRevE.49.1599 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.3390/instruments5030028 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 F. Burkart |y 2022 |2 Crossref |t Proceedings of the 31st International Linear Accelerator Conference (LINAC’22), Liverpool, UK |o F. Burkart Proceedings of the 31st International Linear Accelerator Conference (LINAC’22), Liverpool, UK 2022 |
999 | C | 5 | |1 A. Eichler |y 2021 |2 Crossref |t Proceedings of the 12th International Particle Accelerator Conference, IPAC-2021, Campinas, SP, Brazil |o A. Eichler Proceedings of the 12th International Particle Accelerator Conference, IPAC-2021, Campinas, SP, Brazil 2021 |
999 | C | 5 | |1 A. Raffin |y 2021 |2 Crossref |o A. Raffin 2021 |
999 | C | 5 | |a 10.1109/JPROC.2015.2494218 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.124.124801 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 K. Hwang |y 2022 |2 Crossref |t Proceedings of the 13th International Particle Accelerator Conference, IPAC-2022, Bangkok, Thailand |o K. Hwang Proceedings of the 13th International Particle Accelerator Conference, IPAC-2022, Bangkok, Thailand 2022 |
999 | C | 5 | |1 M. Balandat |y 2020 |2 Crossref |t Advances in Neural Information Processing Systems 33: 34th Annual Conference on Neural Information Processing Systems (NeurIPS-2020) |o M. Balandat Advances in Neural Information Processing Systems 33: 34th Annual Conference on Neural Information Processing Systems (NeurIPS-2020) 2020 |
999 | C | 5 | |1 R. Roussel |y 2023 |2 Crossref |t Proceedings of the 14th International Particle Accelerator Conference, IPAC-2023, Venice, Italy |o R. Roussel Proceedings of the 14th International Particle Accelerator Conference, IPAC-2023, Venice, Italy 2023 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|