Home > Publications database > Residue-level error detection in cryoelectron microscopy models > print |
001 | 600207 | ||
005 | 20250715173207.0 | ||
024 | 7 | _ | |a 10.1016/j.str.2023.05.002 |2 doi |
024 | 7 | _ | |a 0969-2126 |2 ISSN |
024 | 7 | _ | |a 1878-4186 |2 ISSN |
024 | 7 | _ | |a altmetric:149087915 |2 altmetric |
024 | 7 | _ | |a pmid:37253357 |2 pmid |
024 | 7 | _ | |a WOS:001042128600001 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4378674714 |
037 | _ | _ | |a PUBDB-2023-07781 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Reggiano, Gabriella |0 0000-0003-2311-2155 |b 0 |
245 | _ | _ | |a Residue-level error detection in cryoelectron microscopy models |
260 | _ | _ | |a Cambridge, Mass. |c 2023 |b Cell Press |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1706708307_2355238 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Building accurate protein models into moderate resolution (3–5 Å) cryoelectron microscopy (cryo-EM) maps is challenging and error prone. We have developed MEDIC (Model Error Detection in Cryo-EM), a robust statistical model that identifies local backbone errors in protein structures built into cryo-EM maps by combining local fit-to-density with deep-learning-derived structural information. MEDIC is validated on a set of 28 structures that were subsequently solved to higher resolutions, where we identify the differences between low- and high-resolution structures with 68% precision and 60% recall. We additionally use this model to fix over 100 errors in 12 deposited structures and to identify errors in 4 refined AlphaFold predictions with 80% precision and 60% recall. As modelers more frequently use deep learning predictions as a starting point for refinement and rebuilding, MEDIC’s ability to handle errors in structures derived from hand-building and machine learning methods makes it a powerful tool for structural biologists. |
536 | _ | _ | |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633) |0 G:(DE-HGF)POF4-633 |c POF4-633 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Lugmayr, Wolfgang |0 P:(DE-H253)PIP1021411 |b 1 |
700 | 1 | _ | |a Farrell, Daniel |b 2 |
700 | 1 | _ | |a Marlovits, Thomas |0 P:(DE-H253)PIP1021412 |b 3 |
700 | 1 | _ | |a DiMaio, Frank |0 0000-0002-7524-8938 |b 4 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.str.2023.05.002 |g Vol. 31, no. 7, p. 860 - 869.e4 |0 PERI:(DE-600)2031189-8 |n 7 |p 860-869.e4 |t Structure |v 31 |y 2023 |x 0969-2126 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/600207/files/1-s2.0-S0969212623001582-main.pdf |y Restricted |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/600207/files/1-s2.0-S0969212623001582-main.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:bib-pubdb1.desy.de:600207 |p VDB |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 1 |6 P:(DE-H253)PIP1021411 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 1 |6 P:(DE-H253)PIP1021411 |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 3 |6 P:(DE-H253)PIP1021412 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 3 |6 P:(DE-H253)PIP1021412 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-633 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Life Sciences – Building Blocks of Life: Structure and Function |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-08-24 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-24 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-08-24 |
920 | 1 | _ | |0 I:(DE-H253)CSSB-UKE-TM-20210520 |k CSSB-UKE-TM |l CSSB-UKE-TM |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)CSSB-UKE-TM-20210520 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|