001     599968
005     20250715173521.0
024 7 _ |a 10.1016/j.nima.2023.168125
|2 doi
024 7 _ |a Ma:2022doz
|2 INSPIRETeX
024 7 _ |a inspire:2117077
|2 inspire
024 7 _ |a 0167-5087
|2 ISSN
024 7 _ |a 0168-9002
|2 ISSN
024 7 _ |a 1872-9576
|2 ISSN
024 7 _ |a arXiv:2207.09144
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2023-07657
|2 datacite_doi
024 7 _ |a altmetric:132834939
|2 altmetric
024 7 _ |a WOS:001004484700001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4320487205
037 _ _ |a PUBDB-2023-07657
041 _ _ |a English
082 _ _ |a 530
088 _ _ |a arXiv:2207.09144
|2 arXiv
100 1 _ |a Ma, S.
|0 P:(DE-H253)PIP1097876
|b 0
|e Corresponding author
245 _ _ |a The application of encoder–decoder neural networks in high accuracy and efficiency slit-scan emittance measurements
260 _ _ |a Amsterdam
|c 2023
|b North-Holland Publ. Co.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1709650539_2774040
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A superconducting radio-frequency (SRF) photo injector is in operation at the electron linac for beams with high brilliance and low emittance (ELBE) radiation center and generates continuous wave (CW) electron beams with high average current and high brightness for user operation since 2018. The speed of emittance measurement at the SRF gun beamline can be increased by improving the slit-scan system, thus the measurement time for one phase space mapping can be shortened from about 15 min to 90 s. The convolution neural networks are applied to improve the efficiency and accuracy of beamlet images processing. In order to estimate the uncertainty in the calculation of normalized emittance, we analyze the main error contributions.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
650 _ 7 |a SRF photo injectors
|2 autogen
650 _ 7 |a Beam emittance
|2 autogen
650 _ 7 |a Slit-scan
|2 autogen
650 _ 7 |a Machine learning
|2 autogen
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Arnold, A.
|b 1
700 1 _ |a Michel, P.
|b 2
700 1 _ |a Murcek, P.
|b 3
700 1 _ |a Ryzhov, A.
|b 4
700 1 _ |a Schaber, J.
|b 5
700 1 _ |a Steinbrück, R.
|b 6
700 1 _ |a Evtushenko, P.
|b 7
700 1 _ |a Teichert, J.
|0 P:(DE-H253)PIP1082872
|b 8
|e Corresponding author
700 1 _ |a Hillert, W.
|0 P:(DE-H253)PIP1032393
|b 9
700 1 _ |a Xiang, R.
|b 10
700 1 _ |a Zhu, J.
|0 P:(DE-H253)PIP1091261
|b 11
773 _ _ |a 10.1016/j.nima.2023.168125
|g Vol. 1050, p. 168125 -
|0 PERI:(DE-600)1466532-3
|p 168125
|t Nuclear instruments & methods in physics research / Section A
|v 1050
|y 2023
|x 0167-5087
787 0 _ |a Ma, S. et.al.
|d 2022
|i IsParent
|0 PUBDB-2022-04155
|r arXiv:2207.09144
|t The application of machine learning in high accuracy and efficiency slit-scan emittance measurements
856 4 _ |u https://bib-pubdb1.desy.de/record/599968/files/1-s2.0-S0168900223001158-main.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/599968/files/Post.Ref..pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/599968/files/1-s2.0-S0168900223001158-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/599968/files/Post.Ref..pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:599968
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1097876
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1082872
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 9
|6 P:(DE-H253)PIP1032393
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1032393
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-H253)PIP1091261
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 11
|6 P:(DE-H253)PIP1091261
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-25
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL INSTRUM METH A : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-25
920 1 _ |0 I:(DE-H253)CQTA-20221102
|k CQTA
|l Centre f. Quantum Techno. a. Application
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)CQTA-20221102
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21