001     599780
005     20250715173339.0
024 7 _ |a 10.3389/fphy.2023.1204073
|2 doi
024 7 _ |a 10.3204/PUBDB-2023-07506
|2 datacite_doi
024 7 _ |a altmetric:150418851
|2 altmetric
024 7 _ |a WOS:001024102900001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4381996821
037 _ _ |a PUBDB-2023-07506
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Casalbuoni, Sara
|0 P:(DE-H253)PIP1086297
|b 0
|e Corresponding author
245 _ _ |a Superconducting undulator activities at the European X-ray Free-Electron Laser Facility
260 _ _ |a Lausanne
|c 2023
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1702303493_181749
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a For more than 5 years, superconducting undulators (SCUs) have been successfully delivering X-rays in storage rings. The European X-Ray Free-Electron Laser Facility (XFEL) plans to demonstrate the operation of SCUs in X-ray free-electron lasers (FELs). For the same geometry, SCUs can reach a higher peak field on the axis with respect to all other available technologies, offering a larger photon energy tunability range. The application of short-period SCUs in a high electron beam energy FEL > 11 GeV will enable lasing at very hard X-rays > 40 keV. The large tunability range of SCUs will allow covering the complete photon energy range of the soft X-ray experiments at the European XFEL without changing electron beam energy, as currently needed with the installed permanent magnet undulators. For a possible continuous-wave (CW) upgrade under discussion at the European XFEL with a lower electron beam energy of approximately 7–8 GeV, SCUs can provide the same photon energy range as available at present with the permanent magnet undulators and electron energies. This paper will describe the potential of SCUs for X-ray FELs. In particular, it will focus on the different activities ongoing at the European XFEL and in collaboration with DESY to allow the implementation of SCUs in the European XFEL in the upcoming years.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a XFEL
|e Experiments at XFEL
|1 EXP:(DE-H253)XFEL-20150101
|0 EXP:(DE-H253)XFEL-Exp-20150101
|5 EXP:(DE-H253)XFEL-Exp-20150101
|x 0
700 1 _ |a Abeghyan, Suren
|0 P:(DE-H253)PIP1023576
|b 1
700 1 _ |a Alanakyan, Levon
|0 P:(DE-H253)PIP1102173
|b 2
700 1 _ |a Baader, Johann
|0 P:(DE-H253)PIP1093495
|b 3
700 1 _ |a Barbanotti, Serena
|0 P:(DE-H253)PIP1006618
|b 4
700 1 _ |a Decking, Winfried
|0 P:(DE-H253)PIP1002733
|b 5
700 1 _ |a Felice, Massimiliano Di
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Eckoldt, Hans-Jörg
|0 P:(DE-H253)PIP1002739
|b 7
700 1 _ |a Englisch, Uwe
|0 P:(DE-H253)PIP1005341
|b 8
700 1 _ |a Geloni, Gianluca
|0 P:(DE-H253)PIP1000427
|b 9
700 1 _ |a Grattoni, Vanessa
|0 P:(DE-H253)PIP1080378
|b 10
700 1 _ |a Grau, Andreas
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Hauberg, Axel
|0 P:(DE-H253)PIP1002463
|b 12
700 1 _ |a Helwich, Christian
|0 P:(DE-H253)PIP1002418
|b 13
700 1 _ |a Hobl, Achim
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Jensch, Kay
|0 P:(DE-H253)PIP1002378
|b 15
700 1 _ |a Karabekyan, Suren
|0 P:(DE-H253)PIP1010725
|b 16
700 1 _ |a Civita, Daniele La
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Lederer, Sven
|0 P:(DE-H253)PIP1005695
|b 18
700 1 _ |a Lechner, Christoph
|0 P:(DE-H253)PIP1016135
|b 19
700 1 _ |a Lilje, Lutz
|0 P:(DE-H253)PIP1000213
|b 20
700 1 _ |a Liu, Shan
|0 P:(DE-H253)PIP1027524
|b 21
700 1 _ |a Marchetti, Barbara
|0 P:(DE-H253)PIP1015848
|b 22
700 1 _ |a Potter, Andrew
|0 P:(DE-H253)PIP1093926
|b 23
700 1 _ |a Schnautz, Tobias
|0 P:(DE-H253)PIP1005320
|b 24
700 1 _ |a Schneidmiller, Evgeny
|0 P:(DE-H253)PIP1001599
|b 25
700 1 _ |a Sinn, Harald
|0 P:(DE-H253)PIP1005916
|b 26
700 1 _ |a Walter, Wolfgang
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Wichmann, Riko
|0 P:(DE-H253)PIP1001192
|b 28
700 1 _ |a Wohlenberg, Torsten
|0 P:(DE-H253)PIP1001293
|b 29
700 1 _ |a Yakopov, Grigory
|0 P:(DE-H253)PIP1102174
|b 30
700 1 _ |a Yakopov, Mikhail
|0 P:(DE-H253)PIP1017549
|b 31
700 1 _ |a Zagorodnov, Igor
|0 P:(DE-H253)PIP1004226
|b 32
700 1 _ |a Zimmermann, René
|0 P:(DE-H253)PIP1023522
|b 33
700 1 _ |a Ziolkowski, Pawel
|0 P:(DE-H253)PIP1020508
|b 34
773 _ _ |a 10.3389/fphy.2023.1204073
|g Vol. 11, p. 1204073
|0 PERI:(DE-600)2721033-9
|p 1204073
|t Frontiers in physics
|v 11
|y 2023
|x 2296-424X
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/599780/files/fphy-11-1204073.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/599780/files/fphy-11-1204073.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:599780
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 0
|6 P:(DE-H253)PIP1086297
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 1
|6 P:(DE-H253)PIP1023576
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 2
|6 P:(DE-H253)PIP1102173
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 3
|6 P:(DE-H253)PIP1093495
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1006618
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1002733
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 5
|6 P:(DE-H253)PIP1002733
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1002739
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 8
|6 P:(DE-H253)PIP1005341
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 9
|6 P:(DE-H253)PIP1000427
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 10
|6 P:(DE-H253)PIP1080378
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 10
|6 P:(DE-H253)PIP1080378
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 12
|6 P:(DE-H253)PIP1002463
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 13
|6 P:(DE-H253)PIP1002418
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 15
|6 P:(DE-H253)PIP1002378
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 16
|6 P:(DE-H253)PIP1010725
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 18
|6 P:(DE-H253)PIP1005695
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 19
|6 P:(DE-H253)PIP1016135
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 19
|6 P:(DE-H253)PIP1016135
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 20
|6 P:(DE-H253)PIP1000213
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 21
|6 P:(DE-H253)PIP1027524
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 22
|6 P:(DE-H253)PIP1015848
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 23
|6 P:(DE-H253)PIP1093926
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 24
|6 P:(DE-H253)PIP1005320
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 25
|6 P:(DE-H253)PIP1001599
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 25
|6 P:(DE-H253)PIP1001599
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 26
|6 P:(DE-H253)PIP1005916
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 28
|6 P:(DE-H253)PIP1001192
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 28
|6 P:(DE-H253)PIP1001192
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 29
|6 P:(DE-H253)PIP1001293
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 30
|6 P:(DE-H253)PIP1102174
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 31
|6 P:(DE-H253)PIP1017549
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 32
|6 P:(DE-H253)PIP1004226
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 33
|6 P:(DE-H253)PIP1023522
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 34
|6 P:(DE-H253)PIP1020508
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT PHYS-LAUSANNE : 2022
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-12T10:34:55Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-12T10:34:55Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-05-12T10:34:55Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
920 1 _ |0 I:(DE-H253)MPC1-20210408
|k MPC1
|l Magnetstrom, Modulatoren und Senderstrom
|x 0
920 1 _ |0 I:(DE-H253)MKS1-20210408
|k MKS1
|l Kryogenik
|x 1
920 1 _ |0 I:(DE-H253)MXL-20160301
|k MXL
|l Koordination des XFEL-Beschleunigers
|x 2
920 1 _ |0 I:(DE-H253)MPC-20210120
|k MPC
|l Entwicklung Leistungselektronik
|x 3
920 1 _ |0 I:(DE-H253)MVS-20120731
|k MVS
|l Vakuumsysteme
|x 4
920 1 _ |0 I:(DE-H253)XFEL_ADM_PROC_DA-20220218
|k XFEL_ADM_PROC_DA
|l Procurement DESY Accelerator
|x 5
920 1 _ |0 I:(DE-H253)MKS-20120806
|k MKS
|l Kryogenik und Supraleitung
|x 6
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 7
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)MPC1-20210408
980 _ _ |a I:(DE-H253)MKS1-20210408
980 _ _ |a I:(DE-H253)MXL-20160301
980 _ _ |a I:(DE-H253)MPC-20210120
980 _ _ |a I:(DE-H253)MVS-20120731
980 _ _ |a I:(DE-H253)XFEL_ADM_PROC_DA-20220218
980 _ _ |a I:(DE-H253)MKS-20120806
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21