001     599311
005     20250715173338.0
024 7 _ |a 10.1002/aelm.202201226
|2 doi
024 7 _ |a 10.3204/PUBDB-2023-07307
|2 datacite_doi
024 7 _ |a WOS:000974689400001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4366827195
037 _ _ |a PUBDB-2023-07307
041 _ _ |a English
082 _ _ |a 621.3
100 1 _ |a Zahari, Finn
|0 P:(DE-H253)PIP1086059
|b 0
|e Corresponding author
245 _ _ |a Trap‐Assisted Memristive Switching in HfO$_2$ ‐Based Devices Studied by In Situ Soft and Hard X‐Ray Photoelectron Spectroscopy
260 _ _ |a Weinheim
|c 2023
|b Wiley-VCH Verlag GmbH & Co. KG
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1701855287_3420986
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Memristive devices are under intense development as non-volatile memory elements for extending the computing capabilities of traditional silicon technology by enabling novel computing primitives. In this respect, interface-based memristive devices are promising candidates to emulate synaptic functionalities in neuromorphic circuits aiming to replicate the information processing of nervous systems. A device composed of Nb/NbO$_x$/Al$_2$O$_3$/HfO$_2$/Au that shows promising features like analog switching, no electro-forming, and high current-voltage non-linearity is reported. Synchrotron-based X-ray photoelectron spectroscopy and depth-dependent hard X-ray photoelectron spectroscopy are used to probe in situ different resistance states and thus the origin of memristive switching. Spectroscopic evidence for memristive switching based on the charge state of electron traps within HfO$_2$ is found. Electron energy loss spectroscopy and transmission electron microscopy support the analysis. A device model is proposed that considers a two-terminal metal–insulator–semiconductor structure in which traps within the insulator (HfO$_2$/Al$_2$O$_3$) modulate the space charge region within the semiconductor (NbO$_x$) and, thereby, the overall resistance. The experimental findings are in line with impedance spectroscopy data reported in the companion paper (Marquardt et al). Both works complement one another to derive a detailed device model, which helps to engineer device performance and integrate devices into silicon technology.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P04
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P04-20150101
|6 EXP:(DE-H253)P-P04-20150101
|x 0
693 _ _ |a PETRA III
|f PETRA Beamline P22
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P22-20150101
|6 EXP:(DE-H253)P-P22-20150101
|x 1
700 1 _ |a Marquardt, Richard
|0 P:(DE-H253)PIP1086056
|b 1
700 1 _ |a Kalläne, Matthias
|0 P:(DE-H253)PIP1008828
|b 2
700 1 _ |a Gronenberg, Ole
|b 3
700 1 _ |a Schlueter, Christoph
|0 P:(DE-H253)PIP1011024
|b 4
700 1 _ |a Matveyev, Yury
|0 P:(DE-H253)PIP1013396
|b 5
700 1 _ |a Haberfehlner, Georg
|0 0000-0003-4136-9384
|b 6
700 1 _ |a Diekmann, Florian
|0 P:(DE-H253)PIP1019378
|b 7
700 1 _ |a Nierhauve, Alena
|0 P:(DE-H253)PIP1080354
|b 8
700 1 _ |a Buck, Jens
|0 P:(DE-H253)PIP1009466
|b 9
700 1 _ |a Hanff, Arndt
|0 P:(DE-H253)PIP1013674
|b 10
700 1 _ |a Kolhatkar, Gitanjali
|0 P:(DE-H253)PIP1091399
|b 11
700 1 _ |a Kothleitner, Gerald
|0 0000-0002-2116-7761
|b 12
700 1 _ |a Kienle, Lorenz
|0 P:(DE-H253)PIP1015170
|b 13
700 1 _ |a Ziegler, Martin
|b 14
700 1 _ |a Carstensen, Jürgen
|b 15
700 1 _ |a Rossnagel, Kai
|0 P:(DE-H253)PIP1007948
|b 16
700 1 _ |a Kohlstedt, Hermann
|0 P:(DE-H253)PIP1087948
|b 17
773 _ _ |a 10.1002/aelm.202201226
|g Vol. 9, no. 6, p. 2201226
|0 PERI:(DE-600)2810904-1
|n 6
|p 2201226
|t Advanced electronic materials
|v 9
|y 2023
|x 2199-160X
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/599311/files/Trap-Assisted%20Memristive%20Switching%20in%20.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/599311/files/Trap-Assisted%20Memristive%20Switching%20in%20.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:599311
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1086059
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1086056
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1008828
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1011024
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1013396
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1013396
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1019378
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1080354
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 9
|6 P:(DE-H253)PIP1009466
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-H253)PIP1013674
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-H253)PIP1091399
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 13
|6 P:(DE-H253)PIP1015170
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 16
|6 P:(DE-H253)PIP1007948
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 17
|6 P:(DE-H253)PIP1087948
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ELECTRON MATER : 2022
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-07-24T07:52:16Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-07-24T07:52:16Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-07-24T07:52:16Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-28
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ADV ELECTRON MATER : 2022
|d 2023-08-28
920 1 _ |0 I:(DE-H253)FS-PETRA-S-20210408
|k FS-PETRA-S
|l PETRA-S
|x 0
920 1 _ |0 I:(DE-H253)FS-EC-20120731
|k FS-EC
|l FS-Experiment Control
|x 1
920 1 _ |0 I:(DE-H253)FS-SXQM-20190201
|k FS-SXQM
|l FS-SXQM
|x 2
920 1 _ |0 I:(DE-H253)UKiel-20120814
|k UKiel
|l Uni Kiel
|x 3
920 1 _ |0 I:(DE-H253)FS-PS-20131107
|k FS-PS
|l FS-Photon Science
|x 4
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 5
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-PETRA-S-20210408
980 _ _ |a I:(DE-H253)FS-EC-20120731
980 _ _ |a I:(DE-H253)FS-SXQM-20190201
980 _ _ |a I:(DE-H253)UKiel-20120814
980 _ _ |a I:(DE-H253)FS-PS-20131107
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21