Home > Publications database > Effect of cyclic loading on microstructure and crack propagation in additively manufactured biomaterial Co–Cr–Mo alloy > print |
001 | 599268 | ||
005 | 20250715173227.0 | ||
024 | 7 | _ | |a 10.1016/j.jmrt.2023.08.185 |2 doi |
024 | 7 | _ | |a 2238-7854 |2 ISSN |
024 | 7 | _ | |a 2214-0697 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2023-07275 |2 datacite_doi |
024 | 7 | _ | |a WOS:001069592900001 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4386087290 |
037 | _ | _ | |a PUBDB-2023-07275 |
041 | _ | _ | |a English |
082 | _ | _ | |a 670 |
100 | 1 | _ | |a Coutinho Saraiva, Breno Rabelo |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Effect of cyclic loading on microstructure and crack propagation in additively manufactured biomaterial Co–Cr–Mo alloy |
260 | _ | _ | |a Rio de Janeiro |c 2023 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1737984918_2173969 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a CobalteChromiumeMolybdenum (CoeCreMo) alloys are commonly used for artificial hipand knee joint metallic implants. These components are subjected to repetitive loads duringservice. Therefore, materials used for such applications must exhibit a high fatigue crackresistance. In this research, Coe$_{28}$Cre$_6$Mo (wt.-%) powder was utilized as a feedstock in alaser powder bed fusion process to produce test coupons. The coupons were then subjectedto load-controlled cyclic material tests in the low cycle fatigue regime to study mechanicalresponse and microstructural changes of the material. With the progressing number of cycles,a continuous increase in macroscopic plastic strain was observed. The electron backscattereddiffraction analysis revealed that cyclic loading caused deformation-induced facecenteredcubic (FCC)/hexagonal close-packed (HCP) phase transformation. In addition, thephase transition generated an accumulation of plastic strain at the FCC/HCP interface givingrise to crack nucleation. The crack propagation path along HCP orientation variants withhigh mechanical work and strain hardening mechanism is discussed. |
536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a Nanolab |e DESY NanoLab: Microscopy |1 EXP:(DE-H253)DESY-NanoLab-20150101 |0 EXP:(DE-H253)Nanolab-04-20150101 |5 EXP:(DE-H253)Nanolab-04-20150101 |x 0 |
693 | _ | _ | |a Nanolab |e DESY NanoLab: Sample Preparation |1 EXP:(DE-H253)DESY-NanoLab-20150101 |0 EXP:(DE-H253)Nanolab-01-20150101 |5 EXP:(DE-H253)Nanolab-01-20150101 |x 1 |
700 | 1 | _ | |a Novotny, Ladislav |0 P:(DE-H253)PIP1100791 |b 1 |
700 | 1 | _ | |a Carpentieri, Bruno |0 P:(DE-HGF)0 |b 2 |e Corresponding author |
700 | 1 | _ | |a Keller, Thomas F. |0 P:(DE-H253)PIP1019138 |b 3 |
700 | 1 | _ | |a Fáberová, Mária |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Bureš, Radovan |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Rodrigues, Samuel Filgueiras |0 P:(DE-HGF)0 |b 6 |e Corresponding author |
700 | 1 | _ | |a Rodrigues de Barros Neto, João |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Martinez Antunes, Luiz Henrique |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Masoumi, Mohammad |0 P:(DE-H253)PIP1098195 |b 9 |
700 | 1 | _ | |a Gomes de Abreu, Hamilton Ferreira |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Beres, Miloslav |0 P:(DE-H253)PIP1100792 |b 11 |
773 | _ | _ | |a 10.1016/j.jmrt.2023.08.185 |g Vol. 26, p. 3905 - 3916 |0 PERI:(DE-600)2732709-7 |p 3905 - 3916 |t Journal of materials research and technology |v 26 |y 2023 |x 2238-7854 |
856 | 4 | _ | |u https://www.sciencedirect.com/science/article/pii/S2238785423019981 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/599268/files/TK-S2238785423019981-main.pdf |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/599268/files/TK-S2238785423019981-main.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:bib-pubdb1.desy.de:599268 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1100791 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 3 |6 P:(DE-H253)PIP1019138 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 7 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 8 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 9 |6 P:(DE-H253)PIP1098195 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 10 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 11 |6 P:(DE-H253)PIP1100792 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-10-26 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J MATER RES TECHNOL : 2022 |d 2023-10-26 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J MATER RES TECHNOL : 2022 |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-05-02T08:51:13Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-05-02T08:51:13Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-26 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-26 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-05-02T08:51:13Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-26 |
920 | 1 | _ | |0 I:(DE-H253)FS-NL-20120731 |k FS-NL |l Nanolab |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)FS-NL-20120731 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|