001     599254
005     20250715173258.0
024 7 _ |a 10.3847/1538-4357/acc581
|2 doi
024 7 _ |a 0004-637X
|2 ISSN
024 7 _ |a 1538-4357
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2023-07261
|2 datacite_doi
024 7 _ |a arXiv:2212.07095
|2 arXiv
024 7 _ |a altmetric:140173504
|2 altmetric
024 7 _ |a WOS:001000536000001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4379230867
037 _ _ |a PUBDB-2023-07261
041 _ _ |a English
082 _ _ |a 520
088 _ _ |a arXiv:2212.07095
|2 arXiv
100 1 _ |a Tak, Donggeun
|0 P:(DE-H253)PIP1094637
|b 0
|e Corresponding author
245 _ _ |a Temporal and Spectral Evolution of Gamma-Ray Burst Broad Pulses: Identification of High-latitude Emission in the Prompt Emission
260 _ _ |a London
|c 2023
|b Institute of Physics Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1705307551_3778165
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 30 pages, 36 figures, accepted to ApJ
520 _ _ |a We perform a detailed analysis of broad pulses in bright gamma-ray bursts (GRBs) to understand the evolution of GRB broad pulses. Using the temporal and spectral properties, we test the high-latitude emission (HLE) scenario in the decaying phase of broad pulses. The HLE originates from the curvature effect of a relativistic spherical jet, where higher-latitude photons are delayed and softer than the observer's line-of-sight emission. The signature of HLE has not yet been identified undisputedly during the prompt emission of GRBs. The HLE theory predicts a specific relation, $F_v$,${_E}_p$∝$E^{2}_{p}$, between the peak energy $E_p$ in $νF_ν$ spectra and the spectral flux $F_ν$ measured at $E_p$. . We search for evidence of this relation in 2157 GRBs detected by the Gamma-ray Burst Monitor on board the Fermi Gamma-ray Space Telescope from 2008 to 2017. After imposing unbiased selection criteria in order to minimize contamination in a signal by background and overlaps of pulses, we build a sample of 32 broad pulses in 32 GRBs. We perform a time-resolved spectral analysis on each of these 32 broad pulses and find that the evolution of 18 pulses (56%) is clearly consistent with the HLE relation. For the 18 broad pulses, the exponent δ in the relation of $F_v$,${_E}_p$∝$E^{\delta}_{p}$ is distributed as a Gaussian function with a median and width of 1.99 and 0.34, respectively. This result provides a constraint on the emission radius of GRBs with the HLE signature.
536 _ _ |a 613 - Matter and Radiation from the Universe (POF4-613)
|0 G:(DE-HGF)POF4-613
|c POF4-613
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-H253)VERITAS-20170101
|5 EXP:(DE-H253)VERITAS-20170101
|e Very Energetic Radiation Imaging Telescope Array System
|x 0
700 1 _ |a Uhm, Z. Lucas
|b 1
700 1 _ |a Racusin, Judith
|0 0000-0002-4744-9898
|b 2
700 1 _ |a Zhang, Bing
|b 3
700 1 _ |a Guiriec, Sylvain
|0 0000-0001-5780-8770
|b 4
700 1 _ |a Kocevski, Daniel
|0 0000-0001-9201-4706
|b 5
700 1 _ |a Zhang, Bin-Bin
|b 6
700 1 _ |a McEnery, Julie
|b 7
773 _ _ |a 10.3847/1538-4357/acc581
|g Vol. 949, no. 2, p. 110 -
|0 PERI:(DE-600)1473835-1
|n 2
|p 110
|t The astrophysical journal / Part 1
|v 949
|y 2023
|x 0004-637X
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/599254/files/Temporal%20and%20Spectral%20Evolution%20of%20Gamma-Ray%20Burst%20Broad.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/599254/files/Temporal%20and%20Spectral%20Evolution%20of%20Gamma-Ray%20Burst%20Broad.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:599254
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1094637
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-613
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter and Radiation from the Universe
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:53:38Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:53:38Z
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review, Anonymous peer review, Double anonymous peer review
|d 2023-04-12T14:53:38Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ASTROPHYS J : 2022
|d 2023-08-23
915 _ _ |a No Peer Review
|0 StatID:(DE-HGF)0020
|2 StatID
|b ASC
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
920 1 _ |0 I:(DE-H253)Z_VER-20210408
|k Z_VER
|l VERITAS
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)Z_VER-20210408
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21