000599224 001__ 599224
000599224 005__ 20250715175934.0
000599224 0247_ $$2doi$$a10.1107/S1600577522009778
000599224 0247_ $$2ISSN$$a0909-0495
000599224 0247_ $$2ISSN$$a1600-5775
000599224 0247_ $$2datacite_doi$$a10.3204/PUBDB-2023-07231
000599224 0247_ $$2altmetric$$aaltmetric:138536396
000599224 0247_ $$2pmid$$a36601921
000599224 0247_ $$2WOS$$aWOS:000908417600001
000599224 0247_ $$2openalex$$aopenalex:W4309758003
000599224 037__ $$aPUBDB-2023-07231
000599224 041__ $$aEnglish
000599224 082__ $$a550
000599224 1001_ $$0P:(DE-H253)PIP1032256$$aBahns, Immo$$b0$$eCorresponding author
000599224 245__ $$aStability of Bragg reflectors under megahertz heat load at XFELs
000599224 260__ $$a[Erscheinungsort nicht ermittelbar]$$bWiley-Blackwell$$c2023
000599224 3367_ $$2DRIVER$$aarticle
000599224 3367_ $$2DataCite$$aOutput Types/Journal article
000599224 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1706861067_1861218
000599224 3367_ $$2BibTeX$$aARTICLE
000599224 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000599224 3367_ $$00$$2EndNote$$aJournal Article
000599224 520__ $$aModern X-ray free-electron laser (XFEL) sources can deliver photon pulses with millijoule pulse energies and megahertz repetition rate. As shown by the simulations in this work, for particular cases the dynamical heat load effects for Bragg reflectors could cause problems at these facilities. These problems would be underestimated if only quasi-static thermoelastic simulations are considered. Nevertheless, for the sake of simplicity the quasi-static approach is a common choice for estimating heat load effects. To emphasize the relevance of dynamical thermoelastic effects, the response to the partial absorption of an X-ray pulse, as provided by a saturated X-ray free-electron laser oscillator (XFELO) in a single crystal diamond with a thickness of 100 µm and lateral dimensions in the millimetre range, is discussed in this work. The outcome of the dynamic thermoelastic simulations indicates a clear dominance regarding the strain value reached, which is present for consecutive X-ray matter interactions with megahertz repetition rate.
000599224 536__ $$0G:(DE-HGF)POF4-621$$a621 - Accelerator Research and Development (POF4-621)$$cPOF4-621$$fPOF IV$$x0
000599224 536__ $$0G:(DE-HGF)POF4-6G13$$a6G13 - Accelerator of European XFEL (POF4-6G13)$$cPOF4-6G13$$fPOF IV$$x1
000599224 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000599224 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000599224 7001_ $$0P:(DE-H253)PIP1032808$$aRauer, Patrick$$b1
000599224 7001_ $$0P:(DE-H253)PIP1001739$$aRossbach, Joerg$$b2
000599224 7001_ $$0P:(DE-H253)PIP1005916$$aSinn, Harald$$b3
000599224 773__ $$0PERI:(DE-600)2021413-3$$a10.1107/S1600577522009778$$gVol. 30, no. 1, p. 1 - 10$$n1$$p1 - 10$$tJournal of synchrotron radiation$$v30$$x0909-0495$$y2023
000599224 8564_ $$uhttps://doi.org/10.1107/S1600577522009778
000599224 8564_ $$uhttps://bib-pubdb1.desy.de/record/599224/files/Stability%20of%20Bragg%20reflectors%20under%20megahertz%20heat%20load%20at%20XFELs.pdf$$yOpenAccess
000599224 8564_ $$uhttps://bib-pubdb1.desy.de/record/599224/files/Stability%20of%20Bragg%20reflectors%20under%20megahertz%20heat%20load%20at%20XFELs.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000599224 8767_ $$8W-2022-00639-b$$92022-02-23$$d2024-10-24$$eAPC$$jDEAL$$lWiley$$zXFEL
000599224 909CO $$ooai:bib-pubdb1.desy.de:599224$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000599224 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1032256$$aEuropean XFEL$$b0$$kXFEL.EU
000599224 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1032808$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000599224 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1032808$$aEuropean XFEL$$b1$$kXFEL.EU
000599224 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1001739$$aCentre for Free-Electron Laser Science$$b2$$kCFEL
000599224 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1001739$$aExternal Institute$$b2$$kExtern
000599224 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1005916$$aEuropean XFEL$$b3$$kXFEL.EU
000599224 9131_ $$0G:(DE-HGF)POF4-621$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator Research and Development$$x0
000599224 9131_ $$0G:(DE-HGF)POF4-6G13$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vAccelerator of European XFEL$$x1
000599224 9141_ $$y2023
000599224 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-29
000599224 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
000599224 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000599224 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-29
000599224 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-08-29$$wger
000599224 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-03-08T13:56:53Z
000599224 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-03-08T13:56:53Z
000599224 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
000599224 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-29
000599224 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-29
000599224 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-29
000599224 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000599224 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-29
000599224 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-29
000599224 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-29
000599224 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ SYNCHROTRON RADIAT : 2022$$d2023-08-29
000599224 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-29
000599224 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-29
000599224 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-29$$wger
000599224 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-29
000599224 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-03-08T13:56:53Z
000599224 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000599224 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000599224 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000599224 9201_ $$0I:(DE-H253)MXL-20160301$$kMXL$$lKoordination des XFEL-Beschleunigers$$x0
000599224 9201_ $$0I:(DE-H253)XFEL_DO_ID_XRO-20210408$$kXFEL_DO_ID_XRO$$lX-Ray Optics$$x1
000599224 9801_ $$aFullTexts
000599224 980__ $$ajournal
000599224 980__ $$aVDB
000599224 980__ $$aUNRESTRICTED
000599224 980__ $$aI:(DE-H253)MXL-20160301
000599224 980__ $$aI:(DE-H253)XFEL_DO_ID_XRO-20210408
000599224 980__ $$aAPC