001     599188
005     20231128212231.0
037 _ _ |a PUBDB-2023-07212
041 _ _ |a English
100 1 _ |a Sulc, Antonin
|0 P:(DE-H253)PIP1096696
|b 0
|e Corresponding author
|u desy
111 2 _ |a NeurIPS 2023 workshop on Machine Learning and the Physical Sciences
|g NeuralIPS2023
|c New Orleans
|d 2023-12-15 - 2023-12-15
|w USA
245 _ _ |a PACuna: Automated Fine-Tuning of Language Models for Particle Accelerators
260 _ _ |c 2023
300 _ _ |a 7
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1701176125_2750837
|2 PUB:(DE-HGF)
520 _ _ |a Navigating the landscape of particle accelerators has become increasingly challenging with recent surges in contributions. These intricate devices challenge comprehension, even within individual facilities.To address this, we introduce PACuna, a fine-tuned language model refined through publicly available accelerator resources like conferences, pre-prints, and books.We automated data collection and question generation to minimize expert involvement and make the code available.PACuna demonstrates proficiency in addressing accelerator questions validated by experts.Our approach shows adapting language models to scientific domains by fine-tuning technical texts and auto-generated corpora capturing the latest developments can further produce pre-trained models to answer some specific questions that commercially available assistants cannot and can serve as intelligent assistants for individual facilities.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
693 _ _ |a XFEL
|e Facility (machine) XFEL
|1 EXP:(DE-H253)XFEL-20150101
|0 EXP:(DE-H253)XFEL(machine)-20150101
|5 EXP:(DE-H253)XFEL(machine)-20150101
|x 0
700 1 _ |a Kammering, Raimund
|0 P:(DE-H253)PIP1002321
|b 1
|u desy
700 1 _ |a Eichler, Annika
|0 P:(DE-H253)PIP1087213
|b 2
|u desy
700 1 _ |a Wilksen, Tim
|0 P:(DE-H253)PIP1007238
|b 3
|u desy
856 4 _ |u https://bib-pubdb1.desy.de/record/599188/files/NeurIPS_2023_LLM.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/599188/files/NeurIPS_2023_LLM.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:bib-pubdb1.desy.de:599188
|p VDB
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1096696
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1002321
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 1
|6 P:(DE-H253)PIP1002321
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1087213
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 2
|6 P:(DE-H253)PIP1087213
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1007238
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
914 1 _ |y 2023
920 1 _ |0 I:(DE-H253)MCS_4-20120731
|k MCS 4
|l Beschleunigerkontrollen (FLASH/XFEL)
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)MCS_4-20120731
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21