000598997 001__ 598997
000598997 005__ 20250724132454.0
000598997 0247_ $$2doi$$a10.3847/1538-4357/acc24e
000598997 0247_ $$2INSPIRETeX$$aKhangulyan:2023akp
000598997 0247_ $$2inspire$$ainspire:2625294
000598997 0247_ $$2ISSN$$a0004-637X
000598997 0247_ $$2ISSN$$a1538-4357
000598997 0247_ $$2arXiv$$aarXiv:2301.08578
000598997 0247_ $$2datacite_doi$$a10.3204/PUBDB-2023-07081
000598997 0247_ $$2altmetric$$aaltmetric:141659559
000598997 0247_ $$2WOS$$aWOS:000975145000001
000598997 0247_ $$2openalex$$aopenalex:W4367056900
000598997 037__ $$aPUBDB-2023-07081
000598997 041__ $$aEnglish
000598997 082__ $$a520
000598997 088__ $$2arXiv$$aarXiv:2301.08578
000598997 1001_ $$00000-0002-7576-7869$$aKhangulyan, Dmitry$$b0$$eCorresponding author
000598997 245__ $$aThe Formation of Hard Very High Energy Spectra from Gamma-ray Burst Afterglows via Two-zone Synchrotron Self-Compton Emission
000598997 260__ $$aLondon$$bInstitute of Physics Publ.$$c2023
000598997 3367_ $$2DRIVER$$aarticle
000598997 3367_ $$2DataCite$$aOutput Types/Journal article
000598997 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1709282254_741176
000598997 3367_ $$2BibTeX$$aARTICLE
000598997 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000598997 3367_ $$00$$2EndNote$$aJournal Article
000598997 500__ $$a13 pages, 7 figures, ApJ submitted
000598997 520__ $$aElectron Compton scattering of target photons into the gamma-ray energy band (inverse Compton scattering; IC) is commonly expected to dominate the very high energy (VHE) spectra in gamma-ray bursts (GRBs) especially during the afterglow phase. For sufficiently large center-of-mass energies in these collisions, the effect of the electron recoil starts reducing the scattering cross-section (the Klein–Nishina regime). The IC spectra generated in the Klein–Nishina regime is softer and has a smaller flux level compared to the synchrotron spectra produced by the same electrons. The detection of afterglow emission from nearby GRB190829A in the VHE domain with H.E.S.S. has revealed an unexpected feature: the slope of the VHE spectrum matches well the slope of the X-ray spectra, despite expectations that, for the IC production process, the impact of the Klein–Nishina effect should be strong. The multi-wavelength spectral energy distribution appears to be inconsistent with predictions of one-zone synchrotron–self-Compton models. We study the possible impact of two-zone configuration on the properties of IC emission when the magnetic field strength differs considerably between the two zones. Synchrotron photons from the strong magnetic field zone provide the dominant target for cooling of the electrons in the weak magnetic field zone, which results in a formation of hard electron distribution and consequently of a hard IC emission. We show that the two-zone model can provide a good description of the Swift's X-ray Telescope and VHE H.E.S.S. data.
000598997 536__ $$0G:(DE-HGF)POF4-613$$a613 - Matter and Radiation from the Universe (POF4-613)$$cPOF4-613$$fPOF IV$$x0
000598997 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
000598997 650_7 $$2INSPIRE$$agamma ray: burst
000598997 650_7 $$2INSPIRE$$amagnetic field: low
000598997 650_7 $$2INSPIRE$$aelectron: recoil
000598997 650_7 $$2INSPIRE$$amagnetic field: high
000598997 650_7 $$2INSPIRE$$aCompton scattering: inverse
000598997 650_7 $$2INSPIRE$$agamma ray: energy
000598997 650_7 $$2INSPIRE$$aVHE
000598997 650_7 $$2INSPIRE$$asynchrotron
000598997 650_7 $$2INSPIRE$$aslope
000598997 650_7 $$2INSPIRE$$aphoton
000598997 650_7 $$2INSPIRE$$aformation
000598997 650_7 $$2INSPIRE$$aHESS
000598997 650_7 $$2INSPIRE$$aX-ray
000598997 650_7 $$2INSPIRE$$aspectral
000598997 650_7 $$2INSPIRE$$afield strength
000598997 650_7 $$2INSPIRE$$aflux
000598997 650_7 $$2INSPIRE$$aenergy spectrum
000598997 650_7 $$2INSPIRE$$ascattering
000598997 650_7 $$2autogen$$aNon-thermal radiation sources
000598997 650_7 $$2autogen$$aGamma-ray transient sources
000598997 650_7 $$2autogen$$aGamma-ray bursts
000598997 650_7 $$2autogen$$aGamma-ray astronomy
000598997 650_7 $$2autogen$$aParticle astrophysics
000598997 650_7 $$2autogen$$aX-ray sources
000598997 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000598997 7001_ $$0P:(DE-H253)PIP1080492$$aTaylor, Andrew M.$$b1
000598997 7001_ $$00000-0003-1157-3915$$aAharonian, Felix$$b2
000598997 773__ $$0PERI:(DE-600)1473835-1$$a10.3847/1538-4357/acc24e$$gVol. 947, no. 2, p. 87 -$$n2$$p87$$tThe astrophysical journal / Part 1$$v947$$x0004-637X$$y2023
000598997 8564_ $$uhttps://bib-pubdb1.desy.de/record/598997/files/The%20Formation%20of%20Hard%20Very%20High%20Energy%20Spectra%20from%20Gamma-ray%20Burst%20Afterglows%20via%20Two-zone%20Synchrotron%20Self-Compton%20Emission.pdf$$yOpenAccess
000598997 8564_ $$uhttps://bib-pubdb1.desy.de/record/598997/files/The%20Formation%20of%20Hard%20Very%20High%20Energy%20Spectra%20from%20Gamma-ray%20Burst%20Afterglows%20via%20Two-zone%20Synchrotron%20Self-Compton%20Emission.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000598997 909CO $$ooai:bib-pubdb1.desy.de:598997$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000598997 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1080492$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000598997 9131_ $$0G:(DE-HGF)POF4-613$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vMatter and Radiation from the Universe$$x0
000598997 9141_ $$y2023
000598997 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
000598997 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
000598997 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000598997 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-23
000598997 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-23
000598997 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:53:38Z
000598997 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
000598997 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:53:38Z
000598997 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-23
000598997 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
000598997 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-23
000598997 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000598997 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review, Anonymous peer review, Double anonymous peer review$$d2023-04-12T14:53:38Z
000598997 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-23
000598997 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bASTROPHYS J : 2022$$d2023-08-23
000598997 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review$$bASC$$d2023-08-23
000598997 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
000598997 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
000598997 9201_ $$0I:(DE-H253)Z_THAT-20210408$$kZ_THAT$$lTheoretische Astroteilchenphysik$$x0
000598997 980__ $$ajournal
000598997 980__ $$aVDB
000598997 980__ $$aI:(DE-H253)Z_THAT-20210408
000598997 980__ $$aUNRESTRICTED
000598997 9801_ $$aFullTexts