001 | 598863 | ||
005 | 20250715172932.0 | ||
024 | 7 | _ | |a 10.1007/s10472-023-09831-8 |2 doi |
024 | 7 | _ | |a Blumlein:2021hbq |2 INSPIRETeX |
024 | 7 | _ | |a inspire:1980736 |2 inspire |
024 | 7 | _ | |a 1012-2443 |2 ISSN |
024 | 7 | _ | |a 1573-7470 |2 ISSN |
024 | 7 | _ | |a arXiv:2111.15501 |2 arXiv |
024 | 7 | _ | |a 10.3204/PUBDB-2023-07057 |2 datacite_doi |
024 | 7 | _ | |a WOS:000962572700001 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4362577590 |
037 | _ | _ | |a PUBDB-2023-07057 |
041 | _ | _ | |a English |
082 | _ | _ | |a 004 |
088 | _ | _ | |a arXiv:2111.15501 |2 arXiv |
088 | _ | _ | |a DESY-21-071 |2 DESY |
088 | _ | _ | |a DO-TH 21/16 |2 Fermilab |
088 | _ | _ | |a RISC Report Series 21-17 |2 Other |
088 | _ | _ | |a SAGEX-21-10-E |2 Other |
100 | 1 | _ | |a Blümlein, Johannes |0 P:(DE-H253)PIP1003764 |b 0 |u desy |
245 | _ | _ | |a Hypergeometric Structures in Feynman Integrals |
260 | _ | _ | |a Dordrecht [u.a.] |c 2023 |b Springer Science + Business Media B.V |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1704808616_313856 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a 55 pages, several anc. files |
520 | _ | _ | |a Hypergeometric structures in single and multiscale Feynman integrals emerge in a wide class of topologies. Using integration-by-parts relations, associated master or scalar integrals have to be calculated. For this purpose it appears useful to devise an automated method which recognizes the respective (partial) differential equations related to the corresponding higher transcendental functions. We solve these equations through associated recursions of the expansion coefficient of the multivalued formal Taylor series. The expansion coefficients can be determined using either the package {\tt Sigma} in the case of linear difference equations or by applying heuristic methods in the case of partial linear difference equations. In the present context a new type of sums occurs, the Hurwitz harmonic sums, and generalized versions of them. The code {\tt HypSeries} transforming classes of differential equations into analytic series expansions is described. Also partial difference equations having rational solutions and rational function solutions of Pochhammer symbols are considered, for which the code {\tt solvePartialLDE} is designed. Generalized hypergeometric functions, Appell-,~Kampé de Fériet-, Horn-, Lauricella-Saran-, Srivasta-, and Exton--type functions are considered. We illustrate the algorithms by examples. |
536 | _ | _ | |a 611 - Fundamental Particles and Forces (POF4-611) |0 G:(DE-HGF)POF4-611 |c POF4-611 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de |
650 | _ | 7 | |a differential equations |2 INSPIRE |
650 | _ | 7 | |a Feynman graph |2 INSPIRE |
650 | _ | 7 | |a structure |2 INSPIRE |
650 | _ | 7 | |a mathematical methods |2 INSPIRE |
650 | _ | 7 | |a Taylor expansion |2 INSPIRE |
650 | _ | 7 | |a topology |2 INSPIRE |
650 | _ | 7 | |a master integral |2 INSPIRE |
650 | _ | 7 | |a computer: algebra |2 INSPIRE |
650 | _ | 7 | |a numerical methods |2 INSPIRE |
693 | _ | _ | |a HERA |e HERA: ZEUS |1 EXP:(DE-588)4159571-3 |0 EXP:(DE-588)4276505-5 |5 EXP:(DE-588)4276505-5 |x 0 |
700 | 1 | _ | |a Saragnese, Marco |0 P:(DE-H253)PIP1086086 |b 1 |
700 | 1 | _ | |a Schneider, Carsten |0 P:(DE-H253)PIP1093315 |b 2 |e Corresponding author |
773 | _ | _ | |a 10.1007/s10472-023-09831-8 |g Vol. 91, no. 5, p. 591 - 649 |0 PERI:(DE-600)2002961-5 |n 5 |p 591 - 649 |t Annals of mathematics and artificial intelligence |v 91 |y 2023 |x 1012-2443 |
787 | 0 | _ | |a Blümlein, Johannes et.al. |d 2021 |i IsParent |0 PUBDB-2021-04789 |r DESY-21-071 ; arXiv:2111.15501 ; DO-TH-21-16 ; RISC Report Series 21-17 ; SAGEX-21-10-E |t Hypergeometric Structures in Feynman Integrals |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/598863/files/Hypergeometric%20structures%20in%20Feynman%20integrals.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/598863/files/Hypergeometric%20structures%20in%20Feynman%20integrals.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:598863 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1003764 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1086086 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1093315 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Matter and the Universe |1 G:(DE-HGF)POF4-610 |0 G:(DE-HGF)POF4-611 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Fundamental Particles and Forces |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-08-28 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-28 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ANN MATH ARTIF INTEL : 2022 |d 2023-08-28 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-28 |
915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2023-08-28 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-28 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-08-28 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-28 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-08-28 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-28 |
920 | 1 | _ | |0 I:(DE-H253)Z_ZPPT-20210408 |k Z_ZPPT |l Zeuthen Particle PhysicsTheory |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)Z_ZPPT-20210408 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|