001     598863
005     20250715172932.0
024 7 _ |a 10.1007/s10472-023-09831-8
|2 doi
024 7 _ |a Blumlein:2021hbq
|2 INSPIRETeX
024 7 _ |a inspire:1980736
|2 inspire
024 7 _ |a 1012-2443
|2 ISSN
024 7 _ |a 1573-7470
|2 ISSN
024 7 _ |a arXiv:2111.15501
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2023-07057
|2 datacite_doi
024 7 _ |a WOS:000962572700001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4362577590
037 _ _ |a PUBDB-2023-07057
041 _ _ |a English
082 _ _ |a 004
088 _ _ |a arXiv:2111.15501
|2 arXiv
088 _ _ |a DESY-21-071
|2 DESY
088 _ _ |a DO-TH 21/16
|2 Fermilab
088 _ _ |a RISC Report Series 21-17
|2 Other
088 _ _ |a SAGEX-21-10-E
|2 Other
100 1 _ |a Blümlein, Johannes
|0 P:(DE-H253)PIP1003764
|b 0
|u desy
245 _ _ |a Hypergeometric Structures in Feynman Integrals
260 _ _ |a Dordrecht [u.a.]
|c 2023
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1704808616_313856
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 55 pages, several anc. files
520 _ _ |a Hypergeometric structures in single and multiscale Feynman integrals emerge in a wide class of topologies. Using integration-by-parts relations, associated master or scalar integrals have to be calculated. For this purpose it appears useful to devise an automated method which recognizes the respective (partial) differential equations related to the corresponding higher transcendental functions. We solve these equations through associated recursions of the expansion coefficient of the multivalued formal Taylor series. The expansion coefficients can be determined using either the package {\tt Sigma} in the case of linear difference equations or by applying heuristic methods in the case of partial linear difference equations. In the present context a new type of sums occurs, the Hurwitz harmonic sums, and generalized versions of them. The code {\tt HypSeries} transforming classes of differential equations into analytic series expansions is described. Also partial difference equations having rational solutions and rational function solutions of Pochhammer symbols are considered, for which the code {\tt solvePartialLDE} is designed. Generalized hypergeometric functions, Appell-,~Kampé de Fériet-, Horn-, Lauricella-Saran-, Srivasta-, and Exton--type functions are considered. We illustrate the algorithms by examples.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
650 _ 7 |a differential equations
|2 INSPIRE
650 _ 7 |a Feynman graph
|2 INSPIRE
650 _ 7 |a structure
|2 INSPIRE
650 _ 7 |a mathematical methods
|2 INSPIRE
650 _ 7 |a Taylor expansion
|2 INSPIRE
650 _ 7 |a topology
|2 INSPIRE
650 _ 7 |a master integral
|2 INSPIRE
650 _ 7 |a computer: algebra
|2 INSPIRE
650 _ 7 |a numerical methods
|2 INSPIRE
693 _ _ |a HERA
|e HERA: ZEUS
|1 EXP:(DE-588)4159571-3
|0 EXP:(DE-588)4276505-5
|5 EXP:(DE-588)4276505-5
|x 0
700 1 _ |a Saragnese, Marco
|0 P:(DE-H253)PIP1086086
|b 1
700 1 _ |a Schneider, Carsten
|0 P:(DE-H253)PIP1093315
|b 2
|e Corresponding author
773 _ _ |a 10.1007/s10472-023-09831-8
|g Vol. 91, no. 5, p. 591 - 649
|0 PERI:(DE-600)2002961-5
|n 5
|p 591 - 649
|t Annals of mathematics and artificial intelligence
|v 91
|y 2023
|x 1012-2443
787 0 _ |a Blümlein, Johannes et.al.
|d 2021
|i IsParent
|0 PUBDB-2021-04789
|r DESY-21-071 ; arXiv:2111.15501 ; DO-TH-21-16 ; RISC Report Series 21-17 ; SAGEX-21-10-E
|t Hypergeometric Structures in Feynman Integrals
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/598863/files/Hypergeometric%20structures%20in%20Feynman%20integrals.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/598863/files/Hypergeometric%20structures%20in%20Feynman%20integrals.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:598863
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1003764
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1086086
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1093315
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANN MATH ARTIF INTEL : 2022
|d 2023-08-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-28
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2023-08-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-28
920 1 _ |0 I:(DE-H253)Z_ZPPT-20210408
|k Z_ZPPT
|l Zeuthen Particle PhysicsTheory
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)Z_ZPPT-20210408
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21