Home > Publications database > Application of self-supervised approaches to the classification of X-ray diffraction spectra during phase transitions > print |
001 | 598141 | ||
005 | 20250724132436.0 | ||
024 | 7 | _ | |a 10.1038/s41598-023-36456-y |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2023-06752 |2 datacite_doi |
024 | 7 | _ | |a 37296300 |2 pmid |
024 | 7 | _ | |a WOS:001006690200063 |2 WOS |
024 | 7 | _ | |a openalex:W4380081488 |2 openalex |
037 | _ | _ | |a PUBDB-2023-06752 |
041 | _ | _ | |a English |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Sun, Yue |0 P:(DE-H253)PIP1091503 |b 0 |e Corresponding author |u desy |
245 | _ | _ | |a Application of self-supervised approaches to the classification of X-ray diffraction spectra during phase transitions |
260 | _ | _ | |a [London] |c 2023 |b Macmillan Publishers Limited, part of Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1729758296_2338018 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Spectroscopy and X-ray diffraction techniques encode ample information on investigated samples. The ability of rapidly and accurately extracting these enhances the means to steer the experiment, as well as the understanding of the underlying processes governing the experiment. It improves the efficiency of the experiment, and maximizes the scientific outcome. To address this, we introduce and validate three frameworks based on self-supervised learning which are capable of classifying 1D spectral curves using data transformations preserving the scientific content and only a small amount of data labeled by domain experts. In particular, in this work we focus on the identification of phase transitions in samples investigated by x-ray powder diffraction. We demonstrate that the three frameworks, based either on relational reasoning, contrastive learning, or a combination of the two, are capable of accurately identifying phase transitions. Furthermore, we discuss in detail the selection of data augmentation techniques, crucial to ensure that scientifically meaningful information is retained. |
536 | _ | _ | |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631) |0 G:(DE-HGF)POF4-631 |c POF4-631 |f POF IV |x 0 |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 1 |
536 | _ | _ | |a DFG project G:(GEPRIS)460197019 - FAIRmat – FAIRe Dateninfrastruktur für die Physik der kondensierten Materie und die chemische Physik fester Stoffe (460197019) |0 G:(GEPRIS)460197019 |c 460197019 |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a PETRA III |f PETRA Beamline P02.2 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P02.2-20150101 |6 EXP:(DE-H253)P-P02.2-20150101 |x 0 |
700 | 1 | _ | |a Brockhauser, Sandor |0 P:(DE-H253)PIP1029958 |b 1 |
700 | 1 | _ | |a Hegedűs, Péter |0 P:(DE-HGF)0 |b 2 |e Corresponding author |
700 | 1 | _ | |a Plückthun, Christian |0 P:(DE-H253)PIP1032242 |b 3 |
700 | 1 | _ | |a Gelisio, Luca |0 P:(DE-H253)PIP1028523 |b 4 |
700 | 1 | _ | |a Ferreira de Lima, Danilo Enoque |0 P:(DE-H253)PIP1028636 |b 5 |e Corresponding author |
773 | _ | _ | |a 10.1038/s41598-023-36456-y |g Vol. 13, no. 1, p. 9370 |0 PERI:(DE-600)2615211-3 |n 1 |p 9370 |t Scientific reports |v 13 |y 2023 |x 2045-2322 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/598141/files/Application%20of%20self-supervised%20approaches%20to%20the%20classification%20of%20X-ray%20diffraction%20spectra%20during%20phase%20transitions.pdf |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/598141/files/Application%20of%20self-supervised%20approaches%20to%20the%20classification%20of%20X-ray%20diffraction%20spectra%20during%20phase%20transitions.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:bib-pubdb1.desy.de:598141 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1091503 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 0 |6 P:(DE-H253)PIP1091503 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 1 |6 P:(DE-H253)PIP1029958 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 3 |6 P:(DE-H253)PIP1032242 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 3 |6 P:(DE-H253)PIP1032242 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1028523 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 4 |6 P:(DE-H253)PIP1028523 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 4 |6 P:(DE-H253)PIP1028523 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 5 |6 P:(DE-H253)PIP1028636 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-631 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Matter – Dynamics, Mechanisms and Control |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 1 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI REP-UK : 2022 |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-04-12T15:11:06Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-04-12T15:11:06Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-04-12T15:11:06Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-24 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-24 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-08-24 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
915 | p | c | |a DEAL: Springer Nature 2020 |2 APC |0 PC:(DE-HGF)0113 |
920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
920 | 1 | _ | |0 I:(DE-H253)FS-PETRA-S-20210408 |k FS-PETRA-S |l PETRA-S |x 1 |
920 | 1 | _ | |0 I:(DE-H253)XFEL_DO_DD_DA-20210408 |k XFEL_DO_DD_DA |l Data Analysis |x 2 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
980 | _ | _ | |a I:(DE-H253)FS-PETRA-S-20210408 |
980 | _ | _ | |a I:(DE-H253)XFEL_DO_DD_DA-20210408 |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|