001     598141
005     20250724132436.0
024 7 _ |a 10.1038/s41598-023-36456-y
|2 doi
024 7 _ |a 10.3204/PUBDB-2023-06752
|2 datacite_doi
024 7 _ |a 37296300
|2 pmid
024 7 _ |a WOS:001006690200063
|2 WOS
024 7 _ |a openalex:W4380081488
|2 openalex
037 _ _ |a PUBDB-2023-06752
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Sun, Yue
|0 P:(DE-H253)PIP1091503
|b 0
|e Corresponding author
|u desy
245 _ _ |a Application of self-supervised approaches to the classification of X-ray diffraction spectra during phase transitions
260 _ _ |a [London]
|c 2023
|b Macmillan Publishers Limited, part of Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1729758296_2338018
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Spectroscopy and X-ray diffraction techniques encode ample information on investigated samples. The ability of rapidly and accurately extracting these enhances the means to steer the experiment, as well as the understanding of the underlying processes governing the experiment. It improves the efficiency of the experiment, and maximizes the scientific outcome. To address this, we introduce and validate three frameworks based on self-supervised learning which are capable of classifying 1D spectral curves using data transformations preserving the scientific content and only a small amount of data labeled by domain experts. In particular, in this work we focus on the identification of phase transitions in samples investigated by x-ray powder diffraction. We demonstrate that the three frameworks, based either on relational reasoning, contrastive learning, or a combination of the two, are capable of accurately identifying phase transitions. Furthermore, we discuss in detail the selection of data augmentation techniques, crucial to ensure that scientifically meaningful information is retained.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a DFG project G:(GEPRIS)460197019 - FAIRmat – FAIRe Dateninfrastruktur für die Physik der kondensierten Materie und die chemische Physik fester Stoffe (460197019)
|0 G:(GEPRIS)460197019
|c 460197019
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P02.2
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P02.2-20150101
|6 EXP:(DE-H253)P-P02.2-20150101
|x 0
700 1 _ |a Brockhauser, Sandor
|0 P:(DE-H253)PIP1029958
|b 1
700 1 _ |a Hegedűs, Péter
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Plückthun, Christian
|0 P:(DE-H253)PIP1032242
|b 3
700 1 _ |a Gelisio, Luca
|0 P:(DE-H253)PIP1028523
|b 4
700 1 _ |a Ferreira de Lima, Danilo Enoque
|0 P:(DE-H253)PIP1028636
|b 5
|e Corresponding author
773 _ _ |a 10.1038/s41598-023-36456-y
|g Vol. 13, no. 1, p. 9370
|0 PERI:(DE-600)2615211-3
|n 1
|p 9370
|t Scientific reports
|v 13
|y 2023
|x 2045-2322
856 4 _ |u https://bib-pubdb1.desy.de/record/598141/files/Application%20of%20self-supervised%20approaches%20to%20the%20classification%20of%20X-ray%20diffraction%20spectra%20during%20phase%20transitions.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/598141/files/Application%20of%20self-supervised%20approaches%20to%20the%20classification%20of%20X-ray%20diffraction%20spectra%20during%20phase%20transitions.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:598141
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1091503
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 0
|6 P:(DE-H253)PIP1091503
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 1
|6 P:(DE-H253)PIP1029958
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1032242
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 3
|6 P:(DE-H253)PIP1032242
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1028523
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 4
|6 P:(DE-H253)PIP1028523
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 4
|6 P:(DE-H253)PIP1028523
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 5
|6 P:(DE-H253)PIP1028636
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2022
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T15:11:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T15:11:06Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T15:11:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-24
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-24
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PETRA-S-20210408
|k FS-PETRA-S
|l PETRA-S
|x 1
920 1 _ |0 I:(DE-H253)XFEL_DO_DD_DA-20210408
|k XFEL_DO_DD_DA
|l Data Analysis
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PETRA-S-20210408
980 _ _ |a I:(DE-H253)XFEL_DO_DD_DA-20210408
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21