001     597831
005     20241103101413.0
024 7 _ |a Bringmann:2023iuz
|2 INSPIRETeX
024 7 _ |a inspire:2721943
|2 inspire
024 7 _ |a arXiv:2311.06346
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2023-06699
|2 datacite_doi
037 _ _ |a PUBDB-2023-06699
041 _ _ |a English
088 _ _ |a DESY-23-184
|2 DESY
088 _ _ |a P3H-086
|2 Other
088 _ _ |a TTP-055
|2 Other
088 _ _ |a arXiv:2311.06346
|2 arXiv
100 1 _ |a Bringmann, Torsten
|0 P:(DE-H253)PIP1011531
|b 0
245 _ _ |a Hunting WIMPs with LISA: Correlating dark matter and gravitational wave signals
260 _ _ |c 2023
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1700657800_186444
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a 29 pages, 12 figures + appendices
520 _ _ |a The thermal freeze-out mechanism in its classical form is tightly connected to physics beyond the Standard Model around the electroweak scale, which has been the target of enormous experimental efforts. In this work we study a dark matter model in which freeze-out is triggered by a strong first-order phase transition in a dark sector, and show that this phase transition must also happen close to the electroweak scale, i.e.~in the temperature range relevant for gravitational wave searches with the LISA mission. Specifically, we consider the spontaneous breaking of a $U(1)^\prime$ gauge symmetry through the vacuum expectation value of a scalar field, which generates the mass of a fermionic dark matter candidate that subsequently annihilates into dark Higgs and gauge bosons. In this set-up the peak frequency of the gravitational wave background is tightly correlated with the dark matter relic abundance, and imposing the observed value for the latter implies that the former must lie in the milli-Hertz range. A peculiar feature of our set-up is that the dark sector is not necessarily in thermal equilibrium with the Standard Model during the phase transition, and hence the temperatures of the two sectors evolve independently. Nevertheless, the requirement that the universe does not enter an extended period of matter domination after the phase transition, which would strongly dilute any gravitational wave signal, places a lower bound on the portal coupling that governs the entropy transfer between the two sectors. As a result, the predictions for the peak frequency of gravitational waves in the LISA band are robust, while the amplitude can change depending on the initial dark sector temperature.
536 _ _ |a 611 - Fundamental Particles and Forces (POF4-611)
|0 G:(DE-HGF)POF4-611
|c POF4-611
|f POF IV
|x 0
536 _ _ |a ASYMMETRY - Essential Asymmetries of Nature (101086085)
|0 G:(EU-Grant)101086085
|c 101086085
|f HORIZON-MSCA-2021-SE-01
|x 1
536 _ _ |a DFG project 396021762 - TRR 257: Phänomenologische Elementarteilchenphysik nach der Higgs-Entdeckung (396021762)
|0 G:(GEPRIS)396021762
|c 396021762
|x 2
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a gravitational radiation, frequency
|2 INSPIRE
650 _ 7 |a scale, electroweak interaction
|2 INSPIRE
650 _ 7 |a symmetry, gauge
|2 INSPIRE
650 _ 7 |a freeze-out, thermal
|2 INSPIRE
650 _ 7 |a fermion, dark matter
|2 INSPIRE
650 _ 7 |a dark matter, relic density
|2 INSPIRE
650 _ 7 |a gravitational radiation, background
|2 INSPIRE
650 _ 7 |a fermion, mass
|2 INSPIRE
650 _ 7 |a field theory, scalar
|2 INSPIRE
650 _ 7 |a critical phenomena
|2 INSPIRE
650 _ 7 |a temperature
|2 INSPIRE
650 _ 7 |a LISA
|2 INSPIRE
650 _ 7 |a hidden sector
|2 INSPIRE
650 _ 7 |a new physics
|2 INSPIRE
650 _ 7 |a WIMP
|2 INSPIRE
650 _ 7 |a U(1)
|2 INSPIRE
650 _ 7 |a entropy
|2 INSPIRE
650 _ 7 |a gauge boson
|2 INSPIRE
650 _ 7 |a spontaneous symmetry breaking
|2 INSPIRE
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Gonzalo, Tomás E.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kahlhoefer, Felix
|0 P:(DE-H253)PIP1023670
|b 2
700 1 _ |a Matuszak, Jonas
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
700 1 _ |a Tasillo, Carlo
|0 P:(DE-H253)PIP1098582
|b 4
|u desy
856 4 _ |u https://bib-pubdb1.desy.de/record/597831/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/597831/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |y Restricted
|z StatID:(DE-HGF)0599
|u https://bib-pubdb1.desy.de/record/597831/files/2311.06346v1.pdf
856 4 _ |y OpenAccess
|z StatID:(DE-HGF)0510
|u https://bib-pubdb1.desy.de/record/597831/files/Arxiv%20v1.pdf
856 4 _ |y OpenAccess
|x pdfa
|z StatID:(DE-HGF)0510
|u https://bib-pubdb1.desy.de/record/597831/files/Arxiv%20v1.pdf?subformat=pdfa
856 4 _ |y Restricted
|x pdfa
|z StatID:(DE-HGF)0599
|u https://bib-pubdb1.desy.de/record/597831/files/2311.06346v1.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:597831
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1011531
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1098582
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-611
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Fundamental Particles and Forces
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Published
|0 StatID:(DE-HGF)0580
|2 StatID
920 1 _ |0 I:(DE-H253)T-20120731
|k T
|l Theorie-Gruppe
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)T-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21