001     597223
005     20250715173652.0
024 7 _ |a 10.3389/fphy.2023.1305114
|2 doi
024 7 _ |a 10.3204/PUBDB-2023-06497
|2 datacite_doi
024 7 _ |a altmetric:157697170
|2 altmetric
024 7 _ |a WOS:001135606400001
|2 WOS
024 7 _ |2 openalex
|a openalex:W4390056252
037 _ _ |a PUBDB-2023-06497
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Chukova, Oksana
|0 P:(DE-H253)PIP1011865
|b 0
|e Corresponding author
|u desy
245 _ _ |a Effects of thermal treatment on the complex structure of luminescence emission of Li-doped ZnO screen-printed films
260 _ _ |a Lausanne
|c 2023
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1738233555_3822865
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The ZnO–Li films were synthesized and investigated in an attempt to explore and develop RE-free phosphor materials capable of emitting intense visible light in a wide spectral range. The effects of both heterovalent doping with lithium and high-temperature annealing on the optical properties of ZnO films were studied. The films were deposited on the Al2O3 substrate using the screen-printing method and annealed at 800–1,000°C in air for 0.5–3 h. Both doping and annealing result in the transformation of the shape of reflectance spectra in the range of 300–400 nm and the shift of absorption edge to the long-wavelength region. At the same time, the bandgap value estimated taking into account the exciton peak position and its binding energy is independent of Li-doping. The feature at 300–400 nm and the shift of absorption edge are ascribed to the appearance of the absorption band that excited the yellow photoluminescence band. The photoluminescence spectra of undoped and Li-doped films show the emission bands in the ultraviolet and visible spectral ranges. The ultraviolet emission is due to ZnO exciton recombination. The visible emission band comprises several components peaked at 430, 482, 540, 575, and 640 nm. Their relative intensities depend on Li-doping, annealing temperature, and annealing duration. The 430- and 482-nm luminescence bands were observed in Li-doped films only. Their excitation spectra show the peak located at 330–340 nm, indicating that the energy significantly exceeds the ZnO bandgap energy. Consequently, the 430- and 482-nm luminescence bands are attributed to an additional crystal phase formed under annealing. Other components of visible emission bands are ascribed to the defect-related emission of ZnO. The possible nature of these bands is further discussed. Li-doping and annealing at intermediate temperatures result in blue emission and an enhancement of other visible bands, which makes ZnO–Li films a perspective material in photonic applications.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a MSCA4Ukraine - MSCA4Ukraine (101101923)
|0 G:(EU-Grant)101101923
|c 101101923
|f HORIZON-MSCA-2022-Ukraine-ART195-IBA
|x 2
536 _ _ |a NEP - Nanoscience Foundries and Fine Analysis - Europe|PILOT (101007417)
|0 G:(EU-Grant)101007417
|c 101007417
|f H2020-INFRAIA-2020-1
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P66
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P66-20150101
|6 EXP:(DE-H253)P-P66-20150101
|x 0
700 1 _ |a Borkovska, Lyudmyla
|0 P:(DE-H253)PIP1107604
|b 1
700 1 _ |a Khomenkova, Larysa
|0 P:(DE-H253)PIP1107432
|b 2
700 1 _ |a Ponomaryov, Semyon
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Androulidaki, Maria
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Stratakis, Emmanuel
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.3389/fphy.2023.1305114
|g Vol. 11, p. 1305114
|0 PERI:(DE-600)2721033-9
|p 1305114
|t Frontiers in physics
|v 11
|y 2023
|x 2296-424X
856 4 _ |u https://bib-pubdb1.desy.de/record/597223/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/597223/files/InternalRev_AK_3.doc
856 4 _ |u https://bib-pubdb1.desy.de/record/597223/files/InternalRev_AK_3.docx
856 4 _ |u https://bib-pubdb1.desy.de/record/597223/files/InternalRev_AK_3.odt
856 4 _ |u https://bib-pubdb1.desy.de/record/597223/files/InternalRev_AK_3.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/597223/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/597223/files/fphy-11-1305114.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/597223/files/fphy-11-1305114.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:597223
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1011865
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1011865
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1107604
910 1 _ |a V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-H253)PIP1107604
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1107432
910 1 _ |a V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-H253)PIP1107432
910 1 _ |a V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Institute of Electronic Structure & Laser, FORTH, Heraklion, Greece
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Institute of Electronic Structure & Laser, FORTH, Heraklion, Greece
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT PHYS-LAUSANNE : 2022
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-12T10:34:55Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-12T10:34:55Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-05-12T10:34:55Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-23
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-23
920 1 _ |0 I:(DE-H253)FS-PETRA-S-20210408
|k FS-PETRA-S
|l PETRA-S
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)FS-PETRA-S-20210408
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21