000597223 001__ 597223
000597223 005__ 20250715173652.0
000597223 0247_ $$2doi$$a10.3389/fphy.2023.1305114
000597223 0247_ $$2datacite_doi$$a10.3204/PUBDB-2023-06497
000597223 0247_ $$2altmetric$$aaltmetric:157697170
000597223 0247_ $$2WOS$$aWOS:001135606400001
000597223 0247_ $$2openalex$$aopenalex:W4390056252
000597223 037__ $$aPUBDB-2023-06497
000597223 041__ $$aEnglish
000597223 082__ $$a530
000597223 1001_ $$0P:(DE-H253)PIP1011865$$aChukova, Oksana$$b0$$eCorresponding author$$udesy
000597223 245__ $$aEffects of thermal treatment on the complex structure of luminescence emission of Li-doped ZnO screen-printed films
000597223 260__ $$aLausanne$$bFrontiers Media$$c2023
000597223 3367_ $$2DRIVER$$aarticle
000597223 3367_ $$2DataCite$$aOutput Types/Journal article
000597223 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738233555_3822865
000597223 3367_ $$2BibTeX$$aARTICLE
000597223 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000597223 3367_ $$00$$2EndNote$$aJournal Article
000597223 520__ $$aThe ZnO–Li films were synthesized and investigated in an attempt to explore and develop RE-free phosphor materials capable of emitting intense visible light in a wide spectral range. The effects of both heterovalent doping with lithium and high-temperature annealing on the optical properties of ZnO films were studied. The films were deposited on the Al2O3 substrate using the screen-printing method and annealed at 800–1,000°C in air for 0.5–3 h. Both doping and annealing result in the transformation of the shape of reflectance spectra in the range of 300–400 nm and the shift of absorption edge to the long-wavelength region. At the same time, the bandgap value estimated taking into account the exciton peak position and its binding energy is independent of Li-doping. The feature at 300–400 nm and the shift of absorption edge are ascribed to the appearance of the absorption band that excited the yellow photoluminescence band. The photoluminescence spectra of undoped and Li-doped films show the emission bands in the ultraviolet and visible spectral ranges. The ultraviolet emission is due to ZnO exciton recombination. The visible emission band comprises several components peaked at 430, 482, 540, 575, and 640 nm. Their relative intensities depend on Li-doping, annealing temperature, and annealing duration. The 430- and 482-nm luminescence bands were observed in Li-doped films only. Their excitation spectra show the peak located at 330–340 nm, indicating that the energy significantly exceeds the ZnO bandgap energy. Consequently, the 430- and 482-nm luminescence bands are attributed to an additional crystal phase formed under annealing. Other components of visible emission bands are ascribed to the defect-related emission of ZnO. The possible nature of these bands is further discussed. Li-doping and annealing at intermediate temperatures result in blue emission and an enhancement of other visible bands, which makes ZnO–Li films a perspective material in photonic applications.
000597223 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000597223 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000597223 536__ $$0G:(EU-Grant)101101923$$aMSCA4Ukraine - MSCA4Ukraine (101101923)$$c101101923$$fHORIZON-MSCA-2022-Ukraine-ART195-IBA$$x2
000597223 536__ $$0G:(EU-Grant)101007417$$aNEP - Nanoscience Foundries and Fine Analysis - Europe|PILOT (101007417)$$c101007417$$fH2020-INFRAIA-2020-1$$x3
000597223 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000597223 693__ $$0EXP:(DE-H253)P-P66-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P66-20150101$$aPETRA III$$fPETRA Beamline P66$$x0
000597223 7001_ $$0P:(DE-H253)PIP1107604$$aBorkovska, Lyudmyla$$b1
000597223 7001_ $$0P:(DE-H253)PIP1107432$$aKhomenkova, Larysa$$b2
000597223 7001_ $$0P:(DE-HGF)0$$aPonomaryov, Semyon$$b3
000597223 7001_ $$0P:(DE-HGF)0$$aAndroulidaki, Maria$$b4
000597223 7001_ $$0P:(DE-HGF)0$$aStratakis, Emmanuel$$b5
000597223 773__ $$0PERI:(DE-600)2721033-9$$a10.3389/fphy.2023.1305114$$gVol. 11, p. 1305114$$p1305114$$tFrontiers in physics$$v11$$x2296-424X$$y2023
000597223 8564_ $$uhttps://bib-pubdb1.desy.de/record/597223/files/HTML-Approval_of_scientific_publication.html
000597223 8564_ $$uhttps://bib-pubdb1.desy.de/record/597223/files/InternalRev_AK_3.doc
000597223 8564_ $$uhttps://bib-pubdb1.desy.de/record/597223/files/InternalRev_AK_3.docx
000597223 8564_ $$uhttps://bib-pubdb1.desy.de/record/597223/files/InternalRev_AK_3.odt
000597223 8564_ $$uhttps://bib-pubdb1.desy.de/record/597223/files/InternalRev_AK_3.pdf
000597223 8564_ $$uhttps://bib-pubdb1.desy.de/record/597223/files/PDF-Approval_of_scientific_publication.pdf
000597223 8564_ $$uhttps://bib-pubdb1.desy.de/record/597223/files/fphy-11-1305114.pdf$$yOpenAccess
000597223 8564_ $$uhttps://bib-pubdb1.desy.de/record/597223/files/fphy-11-1305114.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000597223 909CO $$ooai:bib-pubdb1.desy.de:597223$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000597223 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1011865$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000597223 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1011865$$aExternal Institute$$b0$$kExtern
000597223 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1107604$$aExternal Institute$$b1$$kExtern
000597223 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1107604$$a V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine$$b1
000597223 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1107432$$aExternal Institute$$b2$$kExtern
000597223 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1107432$$a V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine$$b2
000597223 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine$$b3
000597223 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Electronic Structure & Laser, FORTH, Heraklion, Greece$$b4
000597223 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Electronic Structure & Laser, FORTH, Heraklion, Greece$$b5
000597223 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000597223 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000597223 9141_ $$y2023
000597223 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000597223 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000597223 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT PHYS-LAUSANNE : 2022$$d2023-08-23
000597223 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
000597223 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
000597223 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-12T10:34:55Z
000597223 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-12T10:34:55Z
000597223 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2021-05-12T10:34:55Z
000597223 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
000597223 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
000597223 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-23
000597223 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-23
000597223 9201_ $$0I:(DE-H253)FS-PETRA-S-20210408$$kFS-PETRA-S$$lPETRA-S$$x0
000597223 980__ $$ajournal
000597223 980__ $$aVDB
000597223 980__ $$aI:(DE-H253)FS-PETRA-S-20210408
000597223 980__ $$aUNRESTRICTED
000597223 9801_ $$aFullTexts