Home > Publications database > Opportunistic CP violation > print |
001 | 597103 | ||
005 | 20250715173001.0 | ||
024 | 7 | _ | |a 10.1007/JHEP06(2023)141 |2 doi |
024 | 7 | _ | |a Bonnefoy:2023bzx |2 INSPIRETeX |
024 | 7 | _ | |a inspire:2632811 |2 inspire |
024 | 7 | _ | |a 1126-6708 |2 ISSN |
024 | 7 | _ | |a 1029-8479 |2 ISSN |
024 | 7 | _ | |a 1127-2236 |2 ISSN |
024 | 7 | _ | |a arXiv:2302.07288 |2 arXiv |
024 | 7 | _ | |a 10.3204/PUBDB-2023-06432 |2 datacite_doi |
024 | 7 | _ | |a altmetric:142600186 |2 altmetric |
024 | 7 | _ | |a WOS:001040491500003 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4381930550 |
037 | _ | _ | |a PUBDB-2023-06432 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
088 | _ | _ | |a arXiv:2302.07288 |2 arXiv |
088 | _ | _ | |a DESY-23-018 |2 DESY |
088 | _ | _ | |a HU-EP-22/39 |2 Other |
088 | _ | _ | |a TUM-HEP-1453/23 |2 Other |
100 | 1 | _ | |a Bonnefoy, Quentin |0 P:(DE-H253)PIP1090387 |b 0 |e Corresponding author |
245 | _ | _ | |a Opportunistic CP violation |
260 | _ | _ | |a [Trieste] |c 2023 |b SISSA |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1699260851_3197789 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a 34 p. + 29 p. of appendices, 6 figures. v2: Table 7 added, some extended discussions, matches JHEP version |
520 | _ | _ | |a In the electroweak sector of the Standard Model, CP violation arises through a very particular interplay between the three quark generations, as described by the Cabibbo-Kobayashi-Maskawa (CKM) mechanism and the single Jarlskog invariant J$_{4}$. Once generalized to the Standard Model Effective Field Theory (SMEFT), this peculiar pattern gets modified by higher-dimensional operators, whose associated Wilson coefficients are usually split into CP-even and odd parts. However, CP violation at dimension four, i.e., at the lowest order in the EFT expansion, blurs this distinction: any Wilson coefficient can interfere with J$_{4}$ and mediate CP violation. In this paper, we study such interferences at first order in the SMEFT expansion, 𝒪(1/Λ$^{2}$), and we capture their associated parameter space via a set of 1551 linear CP-odd flavor invariants. This construction describes both new, genuinely CP-violating quantities as well as the interference between J$_{4}$ and CP-conserving ones. We call this latter possibility opportunistic CP violation. Relying on an appropriate extension of the matrix rank to Taylor expansions, which we dub Taylor rank, we define a procedure to organize the invariants in terms of their magnitude, so as to retain only the relevant ones at a given precision. We explore how this characterization changes when different assumptions are made on the flavor structure of the SMEFT coefficients. Interestingly, some of the CP-odd invariants turn out to be less suppressed than J$_{4}$, even when they capture opportunistic CPV, demonstrating that CP-violation in the SM, at dimension 4, is accidentally small. |
536 | _ | _ | |a 611 - Fundamental Particles and Forces (POF4-611) |0 G:(DE-HGF)POF4-611 |c POF4-611 |f POF IV |x 0 |
536 | _ | _ | |a DFG project 390833306 - EXC 2121: Quantum Universe (390833306) |0 G:(GEPRIS)390833306 |c 390833306 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de |
650 | _ | 7 | |a CP: violation |2 INSPIRE |
650 | _ | 7 | |a dimension: 4 |2 INSPIRE |
650 | _ | 7 | |a operator: higher-dimensional |2 INSPIRE |
650 | _ | 7 | |a capture |2 INSPIRE |
650 | _ | 7 | |a interference |2 INSPIRE |
650 | _ | 7 | |a flavor |2 INSPIRE |
650 | _ | 7 | |a effective field theory |2 INSPIRE |
650 | _ | 7 | |a mediation |2 INSPIRE |
650 | _ | 7 | |a structure |2 INSPIRE |
650 | _ | 7 | |a electroweak interaction |2 INSPIRE |
650 | _ | 7 | |a quark |2 INSPIRE |
650 | _ | 7 | |a Jarlskog |2 INSPIRE |
650 | _ | 7 | |a suppression |2 INSPIRE |
650 | _ | 7 | |a Taylor expansion |2 INSPIRE |
650 | _ | 7 | |a CP Violation |2 autogen |
650 | _ | 7 | |a Flavour Symmetries |2 autogen |
650 | _ | 7 | |a SMEFT |2 autogen |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Gendy, Emanuele |b 1 |
700 | 1 | _ | |a Grojean, Christophe |0 P:(DE-H253)PIP1023796 |b 2 |u desy |
700 | 1 | _ | |a Ruderman, Joshua T. |b 3 |
773 | _ | _ | |a 10.1007/JHEP06(2023)141 |g Vol. 06, no. 6, p. 141 |0 PERI:(DE-600)2027350-2 |n 6 |p 141 |t Journal of high energy physics |v 06 |y 2023 |x 1126-6708 |
787 | 0 | _ | |a Bonnefoy, Quentin et.al. |d 2023 |i IsParent |0 PUBDB-2023-00700 |r DESY-23-018 ; arXiv:2302.07288 ; HU-EP-22/39 ; TUM-HEP-1453/23 |t Opportunistic CP Violation |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/597103/files/JHEP06%282023%29141.pdf |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/597103/files/JHEP06%282023%29141.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:bib-pubdb1.desy.de:597103 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1090387 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1023796 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Matter and the Universe |1 G:(DE-HGF)POF4-610 |0 G:(DE-HGF)POF4-611 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Fundamental Particles and Forces |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-09-03 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-05-02T09:05:11Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-05-02T09:05:11Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-09-03 |
915 | _ | _ | |a SCOAP3 |0 StatID:(DE-HGF)0570 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0571 |2 StatID |b SCOAP3 sponsored Journal |d 2023-09-03 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-05-02T09:05:11Z |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2023-10-24 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-24 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-24 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J HIGH ENERGY PHYS : 2022 |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-24 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J HIGH ENERGY PHYS : 2022 |d 2023-10-24 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
920 | 1 | _ | |0 I:(DE-H253)T-20120731 |k T |l Theorie-Gruppe |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)T-20120731 |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|