000596710 001__ 596710
000596710 005__ 20250715170849.0
000596710 0247_ $$2doi$$a10.1051/0004-6361/202348348
000596710 0247_ $$2ISSN$$a0004-6361
000596710 0247_ $$2ISSN$$a1432-0746
000596710 0247_ $$2datacite_doi$$a10.3204/PUBDB-2023-06235
000596710 0247_ $$2arXiv$$aarXiv:2310.14431
000596710 0247_ $$2altmetric$$aaltmetric:155701682
000596710 0247_ $$2WOS$$aWOS:001207572900006
000596710 0247_ $$2openalex$$aopenalex:W4391876464
000596710 037__ $$aPUBDB-2023-06235
000596710 041__ $$aEnglish
000596710 082__ $$a520
000596710 088__ $$2arXiv$$aarXiv:2310.14431
000596710 1001_ $$0P:(DE-HGF)0$$aBurger-Scheidlin, Christopher$$b0
000596710 245__ $$aGamma-ray detection of newly discovered Ancora SNR: G288.8-6.3
000596710 260__ $$aLes Ulis$$bEDP Sciences$$c2024
000596710 3367_ $$2DRIVER$$aarticle
000596710 3367_ $$2DataCite$$aOutput Types/Journal article
000596710 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1730714879_1848904
000596710 3367_ $$2BibTeX$$aARTICLE
000596710 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000596710 3367_ $$00$$2EndNote$$aJournal Article
000596710 520__ $$aThe supernova remnant (SNR) G288.8-6.3 was recently discovered as a faint radio shell at large Galactic latitude using observations with ASKAP in the EMU survey. Here, we make the first detailed investigation of the $\gamma$-ray emission from the G288.8-6.3 region, aiming to characterise the high-energy emission in the GeV regime from the newly discovered SNR, dubbed Ancora. 15 years of Fermi-Large Area Telescope (LAT) data were analysed at energies between 400 MeV and 1 TeV and the excess seen in the region was modelled using different spatial and spectral models. We detect spatially extended $\gamma$-ray emission coinciding with the radio SNR, with detection significance up to 8.8 $\sigma$. A radial disk spatial model in combination with a power-law spectral model with an energy flux of $(4.80 \pm 0.91) \times 10^{-6}$$\text{MeV}$$\text{cm}^{-2}$$\text{s}^{-1}$, with the spectrum extending up to around 5 GeV was found to be the preferred model. Morphologically, hotspots seen above 1 GeV are well-correlated with the bright western part of the radio shell. The emission is more likely to be of leptonic origin given the estimated gas density in the region and the estimated distance and age of the SNR, but a hadronic scenario cannot be ruled out. Ancora is the eighth SNR detected at high Galactic latitude with Fermi-LAT. This new population of remnants has the potential to constrain the physics of particle diffusion and escape from SNRs into the Galaxy.
000596710 536__ $$0G:(DE-HGF)POF4-613$$a613 - Matter and Radiation from the Universe (POF4-613)$$cPOF4-613$$fPOF IV$$x0
000596710 542__ $$2Crossref$$i2024-04-17$$uhttps://creativecommons.org/licenses/by/4.0
000596710 588__ $$aDataset connected to DataCite
000596710 693__ $$0EXP:(DE-H253)Fermi-20170101$$5EXP:(DE-H253)Fermi-20170101$$eThe Fermi Large Area Telescope$$x0
000596710 7001_ $$aBrose, Robert$$b1
000596710 7001_ $$aMackey, Jonathan$$b2
000596710 7001_ $$aFilipovic, Miroslav D.$$b3
000596710 7001_ $$aGoswami, Pranjupriya$$b4
000596710 7001_ $$aGuillen, Enrique Mestre$$b5
000596710 7001_ $$0P:(DE-H253)PIP1085234$$ade Ona Wilhelmi, Emma Maria$$b6$$eCorresponding author$$udesy
000596710 7001_ $$aSushch, Iurii$$b7
000596710 77318 $$2Crossref$$3journal-article$$a10.1051/0004-6361/202348348$$bEDP Sciences$$d2024-04-01$$pA150$$tAstronomy & Astrophysics$$v684$$x0004-6361$$y2024
000596710 773__ $$0PERI:(DE-600)1458466-9$$a10.1051/0004-6361/202348348$$gVol. 684, p. A150 -$$pA150$$tAstronomy and astrophysics$$v684$$x0004-6361$$y2024
000596710 7870_ $$0PUBDB-2023-06788$$aBurger-Scheidlin, Christopher et.al.$$d2023$$iIsParent$$rarXiv:2310.14431$$tGamma-ray detection of newly discovered Ancora SNR: G288.8-6.3
000596710 8564_ $$uhttps://bib-pubdb1.desy.de/record/596710/files/HTML-Approval_of_scientific_publication.html
000596710 8564_ $$uhttps://bib-pubdb1.desy.de/record/596710/files/PDF-Approval_of_scientific_publication.pdf
000596710 8564_ $$uhttps://bib-pubdb1.desy.de/record/596710/files/aa48348-23.pdf$$yOpenAccess
000596710 8564_ $$uhttps://bib-pubdb1.desy.de/record/596710/files/aa48348-23.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000596710 909CO $$ooai:bib-pubdb1.desy.de:596710$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000596710 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1085234$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000596710 9131_ $$0G:(DE-HGF)POF4-613$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vMatter and Radiation from the Universe$$x0
000596710 9141_ $$y2024
000596710 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-28
000596710 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000596710 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-28
000596710 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000596710 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-31
000596710 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-31
000596710 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-31
000596710 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-31
000596710 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bASTRON ASTROPHYS : 2022$$d2024-12-31
000596710 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-31
000596710 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-31
000596710 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-31
000596710 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bASTRON ASTROPHYS : 2022$$d2024-12-31
000596710 9201_ $$0I:(DE-H253)Z_GA-20210408$$kZ_GA$$lGammaastronomie$$x0
000596710 9201_ $$0I:(DE-H253)Z_THAT-20210408$$kZ_THAT$$lTheoretische Astroteilchenphysik$$x1
000596710 9201_ $$0I:(DE-H253)Z_HESS-20210408$$kZ_HESS$$lHigh Energy Steroscopic System$$x2
000596710 980__ $$ajournal
000596710 980__ $$aVDB
000596710 980__ $$aUNRESTRICTED
000596710 980__ $$aI:(DE-H253)Z_GA-20210408
000596710 980__ $$aI:(DE-H253)Z_THAT-20210408
000596710 980__ $$aI:(DE-H253)Z_HESS-20210408
000596710 9801_ $$aFullTexts
000596710 999C5 $$1Abdollahi$$2Crossref$$9-- missing cx lookup --$$a10.3847/1538-4365/ab6bcb$$p33 -$$tApJS$$v247$$y2020
000596710 999C5 $$1Abdollahi$$2Crossref$$9-- missing cx lookup --$$a10.3847/1538-4365/ac6751$$p53 -$$tApJS$$v260$$y2022
000596710 999C5 $$1Abeysekara$$2Crossref$$9-- missing cx lookup --$$a10.3847/1538-4357/ab8310$$p51 -$$tApJ$$v894$$y2020
000596710 999C5 $$1Acero$$2Crossref$$9-- missing cx lookup --$$a10.3847/0067-0049/224/1/8$$p8 -$$tApJS$$v224$$y2016
000596710 999C5 $$1Ackermann$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1231160$$p807 -$$tScience$$v339$$y2013
000596710 999C5 $$1Ackermann$$2Crossref$$9-- missing cx lookup --$$a10.3847/1538-4365/aacdf7$$p32 -$$tApJS$$v237$$y2018
000596710 999C5 $$1Aharonian$$2Crossref$$9-- missing cx lookup --$$a10.1086/512603$$p236 -$$tApJ$$v661$$y2007
000596710 999C5 $$1Akaike$$2Crossref$$9-- missing cx lookup --$$a10.1109/TAC.1974.1100705$$p716 -$$tIEEE Trans. Automatic Control$$v19$$y1974
000596710 999C5 $$1Aloisio$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.astropartphys.2012.09.007$$p129 -$$tAstrop. Phys.$$v39$$y2012
000596710 999C5 $$1Araya$$2Crossref$$9-- missing cx lookup --$$a10.1093/mnras/stt1162$$p2202 -$$tMNRAS$$v434$$y2013
000596710 999C5 $$1Araya$$2Crossref$$9-- missing cx lookup --$$a10.1093/mnras/stac3337$$p4132 -$$tMNRAS$$v518$$y2023
000596710 999C5 $$1Araya$$2Crossref$$9-- missing cx lookup --$$a10.1093/mnras/stab3550$$p2920 -$$tMNRAS$$v510$$y2022
000596710 999C5 $$1Arias$$2Crossref$$9-- missing cx lookup --$$a10.1051/0004-6361/202244369$$pA71 -$$tA&A$$v667$$y2022
000596710 999C5 $$1Price-Whelan$$2Crossref$$9-- missing cx lookup --$$a10.3847/1538-4357/ac7c74$$p167 -$$tApJ$$v935$$y2022
000596710 999C5 $$2Crossref$$uAtwood W., Albert A., Baldini L., et al. 2013, Pass 8: Toward the Full Realization of the Fermi-LAT Scientific Potential
000596710 999C5 $$1Baade$$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.20.5.259$$p259 -$$tPNAS$$v20$$y1934
000596710 999C5 $$1Braiding$$2Crossref$$9-- missing cx lookup --$$a10.1017/pasa.2018.18$$pe029 -$$tPASA$$v35$$y2018
000596710 999C5 $$1Brose$$2Crossref$$9-- missing cx lookup --$$a10.1051/0004-6361/202141194$$pA139 -$$tA&A$$v654$$y2021
000596710 999C5 $$1Condon$$2Crossref$$9-- missing cx lookup --$$a10.3847/1538-4357/aa9be8$$p100 -$$tApJ$$v851$$y2017
000596710 999C5 $$2Crossref$$uDelporte E. 1930, Délimitation scientifique des constellations: (tables et cartes), Report/Commission 3 of the International Astronomical Union (Cambridge University Press)
000596710 999C5 $$1Devin$$2Crossref$$9-- missing cx lookup --$$a10.1051/0004-6361/202038503$$pA28 -$$tA&A$$v643$$y2020
000596710 999C5 $$1Esposito$$2Crossref$$9-- missing cx lookup --$$a10.1086/177104$$p820 -$$tApJ$$v461$$y1996
000596710 999C5 $$1Ferrand$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.asr.2012.02.004$$p1313 -$$tAdv. Space Res.$$v49$$y2012
000596710 999C5 $$1Filipović$$2Crossref$$9-- missing cx lookup --$$a10.3847/1538-3881/acf19c$$p149 -$$tAJ$$v166$$y2023
000596710 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/2514-3433/ac2256$$uFilipović M. D., & Tothill N. F. H. 2021, Multimessenger Astronomy in Practice (IOP Publishing), 2514
000596710 999C5 $$1Fukui$$2Crossref$$9-- missing cx lookup --$$a10.1088/0004-637X/746/1/82$$p82 -$$tApJ$$v746$$y2012
000596710 999C5 $$1Globus$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.92.021302$$p021302 -$$tPhys. Rev. D$$v92$$y2015
000596710 999C5 $$2Crossref$$uGreen D. A. 2017, VizieR Online Data Catalog: VII/278
000596710 999C5 $$1Green$$2Crossref$$oGreen 2019$$y2019
000596710 999C5 $$1Harris$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-020-2649-2$$p357 -$$tNature$$v585$$y2020
000596710 999C5 $$1Hess$$2Crossref$$oHess 1912$$y1912
000596710 999C5 $$1Abdalla$$2Crossref$$9-- missing cx lookup --$$a10.1051/0004-6361/201732125$$pA3 -$$tA&A$$v612$$y2018
000596710 999C5 $$1Hunter$$2Crossref$$9-- missing cx lookup --$$a10.1109/MCSE.2007.55$$p90 -$$tComput. Sci. Eng.$$v9$$y2007
000596710 999C5 $$2Crossref$$uLacaille, de N.-L. 1755, Mem. Acad. R. Sci., 194
000596710 999C5 $$2Crossref$$uMerloni A., Predehl P., Becker W., et al. 2012, arXiv e-prints [arXiv:1209.3114]
000596710 999C5 $$1Planck Collaboration$$2Crossref$$9-- missing cx lookup --$$a10.1051/0004-6361/201525967$$pA10 -$$tA&A$$v594$$y2016
000596710 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1515/9780691213361$$uPtolemy , Toomer G. J., & Gingerich O. 1998, Ptolemy’s Almagest (Princeton University Press)
000596710 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.2307/j.ctvzgb7vj$$uRidpath I. 2018, Star Tales, 1st edn. (The Lutterworth Press)
000596710 999C5 $$1Sturner$$2Crossref$$oSturner 1995$$y1995
000596710 999C5 $$1Sushch$$2Crossref$$9-- missing cx lookup --$$a10.3847/1538-4357/ac3cb8$$p140 -$$tApJ$$v926$$y2022
000596710 999C5 $$1Tanabashi$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.98.030001$$p030001 -$$tPhys. Rev. D$$v98$$y2018
000596710 999C5 $$1Vink$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00159-011-0049-1$$p49 -$$tA&A Rev.$$v20$$y2012
000596710 999C5 $$1Wolfire$$2Crossref$$9-- missing cx lookup --$$a10.1086/368016$$p278 -$$tApJ$$v587$$y2003
000596710 999C5 $$1Wood$$2Crossref$$oWood 2017$$y2017
000596710 999C5 $$1Zabalza$$2Crossref$$oZabalza 2015$$y2015
000596710 999C5 $$1Zeng$$2Crossref$$9-- missing cx lookup --$$a10.3847/1538-4357/aaf392$$p50 -$$tApJ$$v874$$y2019
000596710 999C5 $$1Zotti$$2Crossref$$9-- missing cx lookup --$$a10.1558/jsa.25608$$p332 -$$tJ. Skyscape Archaeol.$$v8$$y2023