000596416 001__ 596416
000596416 005__ 20231115211045.0
000596416 0247_ $$2URN$$aurn:nbn:de:gbv:18-ediss-112508
000596416 0247_ $$2datacite_doi$$a10.3204/PUBDB-2023-06144
000596416 037__ $$aPUBDB-2023-06144
000596416 041__ $$aEnglish
000596416 1001_ $$0P:(DE-H253)PIP1082226$$aTrost, Fabian$$b0$$eCorresponding author$$gmale
000596416 245__ $$aImaging via photon-photon correlation of X-ray fluorescence$$f2017-10-01 - 2023-09-18
000596416 260__ $$c2023
000596416 300__ $$a146
000596416 3367_ $$2DataCite$$aOutput Types/Dissertation
000596416 3367_ $$2ORCID$$aDISSERTATION
000596416 3367_ $$2BibTeX$$aPHDTHESIS
000596416 3367_ $$02$$2EndNote$$aThesis
000596416 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1700050380_16735
000596416 3367_ $$2DRIVER$$adoctoralThesis
000596416 502__ $$aDissertation, University of Hamburg, 2023$$bDissertation$$cUniversity of Hamburg$$d2023$$o2023-09-18
000596416 520__ $$aThis work discusses and demonstrates the imaging method ‘photon-photon correlation of X-ray fluorescence’, also called ‘Incoherent Diffraction Imaging (IDI)’. This method corresponds to the ‘intensity interferometry’, known from astronomy. However, this method requires measurement or exposure times that are on the order of the coherence time of the measured radiation; for Kα fluorescence of light transition metals, this is on the order of a femtosecond – a temporal length that can be achieved by modern X-ray free electron lasers (XFELs).In addition to the exposure time requirement, this work discusses other influencing factors that can cause a reduction in the useful correlation signal. These are the temporal shape of the excitation pulse, the sample size, the (non) polarization of the detected photons, and others. These factors, collectively called ‘visibility factor’, also manifest as ‘speckle contrast’ and can be measured without the need to perform intensity correlation. A weighting method is presented to determine the speckle contrast from a data set consisting of images with very low photon counts that fluctuate significantly from image to image. This method is applied to compare the speckle contrast of iron Kα fluorescence excited by 3 fs and 15 fs XFEL pulses. An increase in speckle contrast was found for the short pulses compared to the longer ones – a fundamental requirement for the IDI method.Furthermore, inherent noise sources affecting the IDI are discussed. A model is derived to estimate the dependence of the signal-to-noise ratio (SNR) on the photon number per pixel, temporal coherence (or visibility factor), and the shape of the imaged object. In addition, simulations in two and three dimensions were performed to validate the model’s predictions. Unlike coherent imaging methods, more detected photons do not always result in higher SNR. Moreover, larger and more complex objects generally yield poorer SNR, even when the number of measured photons is proportional to the object size or complexity.Finally, an experiment that uses the photon-photon correlation of X-ray fluorescence photons for the first time to reconstruct a nontrivial (noncontinuous) fluorescence emitter distribution is presented. In the course of this experiment, the application of IDI to determine XFEL beam parameters such as focus and temporal pulse length is demonstrated.
000596416 536__ $$0G:(DE-HGF)POF4-633$$a633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)$$cPOF4-633$$fPOF IV$$x0
000596416 536__ $$0G:(GEPRIS)390715994$$aDFG project 390715994 - EXC 2056: CUI: Advanced Imaging of Matter (390715994)$$c390715994$$x1
000596416 693__ $$0EXP:(DE-H253)CFEL-Exp-20150101$$5EXP:(DE-H253)CFEL-Exp-20150101$$eExperiments at CFEL$$x0
000596416 693__ $$0EXP:(DE-H253)XFEL-MID-20150101$$1EXP:(DE-H253)XFEL-20150101$$5EXP:(DE-H253)XFEL-MID-20150101$$6EXP:(DE-H253)XFEL-SASE2-20150101$$aXFEL$$eMID: Materials Imaging and Dynamics$$fSASE2$$x1
000596416 693__ $$0EXP:(DE-MLZ)External-20140101$$5EXP:(DE-MLZ)External-20140101$$eMeasurement at external facility$$x2
000596416 7001_ $$0P:(DE-H253)PIP1006324$$aChapman, Henry N.$$b1$$eThesis advisor
000596416 7001_ $$0P:(DE-H253)PIP1000401$$aRoehlsberger, Ralf$$b2$$eThesis advisor
000596416 8564_ $$u	https://ediss.sub.uni-hamburg.de/handle/ediss/10509
000596416 8564_ $$uhttps://bib-pubdb1.desy.de/record/596416/files/Thesis_Fabian.pdf$$yOpenAccess
000596416 8564_ $$uhttps://bib-pubdb1.desy.de/record/596416/files/Thesis_Fabian.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000596416 909CO $$ooai:bib-pubdb1.desy.de:596416$$popenaire$$popen_access$$purn$$pdriver$$pVDB$$pdnbdelivery
000596416 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1082226$$aCentre for Free-Electron Laser Science$$b0$$kCFEL
000596416 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1006324$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000596416 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1006324$$aCentre for Free-Electron Laser Science$$b1$$kCFEL
000596416 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1006324$$aEuropean XFEL$$b1$$kXFEL.EU
000596416 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1000401$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000596416 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1000401$$aEuropean XFEL$$b2$$kXFEL.EU
000596416 9131_ $$0G:(DE-HGF)POF4-633$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vLife Sciences – Building Blocks of Life: Structure and Function$$x0
000596416 9141_ $$y2023
000596416 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000596416 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000596416 920__ $$lyes
000596416 9201_ $$0I:(DE-H253)FS-CFEL-1-20120731$$kFS-CFEL-1$$lCFEL-Coherent X-Ray Imaging$$x0
000596416 980__ $$aphd
000596416 980__ $$aVDB
000596416 980__ $$aUNRESTRICTED
000596416 980__ $$aI:(DE-H253)FS-CFEL-1-20120731
000596416 9801_ $$aFullTexts