TY  - JOUR
AU  - Jaisle, Nicolas
AU  - David, Cebron
AU  - Konopkova, Zuzana
AU  - Husband, Rachel
AU  - Prescher, Clemens
AU  - Cerantola, Valerio
AU  - Dwivedi, Anand
AU  - Kaa, Johannes
AU  - Appel, Karen
AU  - Buakor, Khachiwan
AU  - Ball, Orianna
AU  - Mcwilliams, Ryan Stewart
AU  - Strohm, Cornelius
AU  - Nakatsutsumi, Motoaki
AU  - Zastrau, Ulf
AU  - Baehtz, Carsten
AU  - Baron, Marzena Anna
AU  - Edmund, Eric
AU  - Biswas, Joydipa
AU  - McHardy, James
AU  - Sturtevant, Blake
AU  - Ehm, Lars
AU  - Goncharov, Alexander
AU  - McMahon, Malcolm
AU  - Buchen, Johannes
AU  - CYNN, HYUNCHAE
AU  - Pace, Edward
AU  - Liermann, Hanns-Peter
AU  - Sneed, Daniel
AU  - Cooper, Samantha
AU  - Anae, Madison
AU  - Kim, Jaeyong
AU  - Wu, Zhongyan
AU  - Lee, Yongjae
AU  - Hwang, Huijeong
AU  - Kim, Taehyun
AU  - Choi, Jinhyuk
AU  - Lee, Jeongmin
AU  - Merkel, Sébastein
AU  - Chantel, Julien
AU  - Koemets, Egor
AU  - Marquardt, Hauke
AU  - Prakapenka, Vitali
AU  - Chariton, Stella
AU  - shevchenko, elena
AU  - Fiquet, Guillaume
AU  - Rosa, Angelika
AU  - Mezouar, Mohamed
AU  - Garbarino, Gaston
AU  - Morard, Guillaume
TI  - MHz free electron laser x-ray diffraction and modeling of pulsed laser heated diamond anvil cell
JO  - Journal of applied physics
VL  - 134
IS  - 9
SN  - 0021-8979
CY  - Melville, NY
PB  - American Inst. of Physics
M1  - PUBDB-2023-06139
SP  - 095904
PY  - 2023
AB  - A new diamond anvil cell experimental approach has been implemented at the European x-ray Free Electron Laser, combining pulsed laser heating with MHz x-ray diffraction. Here, we use this setup to determine liquidus temperatures under extreme conditions, based on the determination of time-resolved crystallization. The focus is on a Fe-Si-O ternary system, relevant for planetary cores. This time-resolved diagnostic is complemented by a finite-element model, reproducing temporal temperature profiles measured experimentally using streaked optical pyrometry. This model calculates the temperature and strain fields by including (i) pressure and temperature dependencies of material properties, and (ii) the heat-induced thermal stress, including feedback effect on material parameter variations. Making our model more realistic, these improvements are critical as they give 7000 K temperature differences compared to previous models. Laser intensities are determined by seeking minimal deviation between measured and modeled temperatures. Combining models and streak optical pyrometry data extends temperature determination below detection limit. The presented approach can be used to infer the liquidus temperature by the appearance of SiO2 diffraction spots. In addition, temperatures obtained by the model agree with crystallization temperatures reported for Fe–Si alloys. Our model reproduces the planetary relevant experimental conditions, providing temperature, pressure, and volume conditions. Those predictions are then used to determine liquidus temperatures at experimental timescales where chemical migration is limited. This synergy of novel time-resolved experiments and finite-element modeling pushes further the interpretation capabilities in diamond anvil cell experiments.
LB  - PUB:(DE-HGF)16
UR  - <Go to ISI:>//WOS:001063559900008
DO  - DOI:10.1063/5.0149836
UR  - https://bib-pubdb1.desy.de/record/596411
ER  -