TY - JOUR
AU - Reinke, Patrick
AU - Schubert, Robin
AU - Oberthür, Dominik
AU - Galchenkova, Marina
AU - Rahmani Mashhour, Aida
AU - Guenther, Sebastian
AU - Chretien, Anaïs
AU - Round, Adam
AU - Seychell, Brandon Charles
AU - Norton-Baker, Brenna
AU - Kim, Chan
AU - Schmidt, Christina
AU - Koua, Faisal H. M.
AU - Tolstikova, Alexandra
AU - Ewert, Wiebke
AU - Pena Murillo, Gisel Esperanza
AU - Mills, Grant
AU - Kirkwood, Henry
AU - Brognaro, Hévila
AU - Han, Huijong
AU - Koliyadu, Jayanath
AU - Schulz, Joachim
AU - Bielecki, Johan
AU - Lieske, Julia
AU - Maracke, Julia
AU - Knoska, Juraj
AU - Lorenzen, Kristina
AU - Brings, Lea
AU - Sikorski, Marcin
AU - Kloos, Marco
AU - Vakili, Mohammad
AU - Vagovic, Patrik
AU - Middendorf, Philipp
AU - de Wijn, Raphael
AU - Bean, Richard
AU - Letrun, Romain
AU - Han, Seonghyun
AU - Falke, Sven
AU - Geng, Tian
AU - Sato, Tokushi
AU - Srinivasan, Vasundara
AU - Kim, Yoonhee
AU - Yefanov, Oleksandr M.
AU - Gelisio, Luca
AU - Beck, Tobias
AU - Doré, Andrew S.
AU - Mancuso, Adrian P.
AU - Betzel, Christian
AU - Bajt, Saša
AU - Redecke, Lars
AU - Chapman, Henry N.
AU - Meents, Alke
AU - Turk, Dušan
AU - Hinrichs, Winfried
AU - Lane, Thomas
TI - SARS-CoV-2 Mpro responds to oxidation by forming disulfide and NOS/SONOS bonds
JO - Nature Communications
VL - 15
IS - 1
SN - 2041-1723
CY - [London]
PB - Nature Publishing Group UK
M1 - PUBDB-2023-05575
SP - 3827
PY - 2024
AB - The main protease (M<sup>pro</sup>) of SARS-CoV-2 is critical for viral function and a key drug target. Mpro is only active when reduced; turnover ceases upon oxidation but is restored by re-reduction. This suggests the system has evolved to survive periods in an oxidative environment, but the mechanism of this protection has not been confirmed. Here, we report a crystal structure of oxidized M<sup>pro</sup> showing a disulfide bond between the active site cysteine, C145, and a distal cysteine, C117. Previous work proposed this disulfide provides the mechanism of protection from irreversible oxidation. M<sup>pro</sup> forms an obligate homodimer, and the C117-C145 structure shows disruption of interactions bridging the dimer interface, implying a correlation between oxidation and dimerization. We confirm dimer stability is weakened in solution upon oxidation. Finally, we observe the protein’s crystallization behavior is linked to its redox state. Oxidized M<sup>pro</sup> spontaneously forms a distinct, more loosely packed lattice. Seeding with crystals of this lattice yields a structure with an oxidation pattern incorporating one cysteine-lysine-cysteine (SONOS) and two lysine-cysteine (NOS) bridges. These structures further our understanding of the oxidative regulation of M<sup>pro</sup> and the crystallization conditions necessary to study this structurally.
LB - PUB:(DE-HGF)16
C6 - pmid:38714735
UR - <Go to ISI:>//WOS:001215774800049
DO - DOI:10.1038/s41467-024-48109-3
UR - https://bib-pubdb1.desy.de/record/593910
ER -