000593910 001__ 593910
000593910 005__ 20250715170853.0
000593910 0247_ $$2doi$$a10.1038/s41467-024-48109-3
000593910 0247_ $$2altmetric$$aaltmetric:163314704
000593910 0247_ $$2pmid$$apmid:38714735
000593910 0247_ $$2datacite_doi$$a10.3204/PUBDB-2023-05575
000593910 0247_ $$2WOS$$aWOS:001215774800049
000593910 0247_ $$2openalex$$aopenalex:W4396708135
000593910 037__ $$aPUBDB-2023-05575
000593910 041__ $$aEnglish
000593910 082__ $$a500
000593910 1001_ $$0P:(DE-H253)PIP1082068$$aReinke, Patrick$$b0$$gmale$$udesy
000593910 245__ $$aSARS-CoV-2 Mpro responds to oxidation by forming disulfide and NOS/SONOS bonds
000593910 260__ $$a[London]$$bNature Publishing Group UK$$c2024
000593910 3367_ $$2DRIVER$$aarticle
000593910 3367_ $$2DataCite$$aOutput Types/Journal article
000593910 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738233404_3821489
000593910 3367_ $$2BibTeX$$aARTICLE
000593910 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000593910 3367_ $$00$$2EndNote$$aJournal Article
000593910 520__ $$aThe main protease (M$^{pro}$) of SARS-CoV-2 is critical for viral function and a key drug target. Mpro is only active when reduced; turnover ceases upon oxidation but is restored by re-reduction. This suggests the system has evolved to survive periods in an oxidative environment, but the mechanism of this protection has not been confirmed. Here, we report a crystal structure of oxidized M$^{pro}$ showing a disulfide bond between the active site cysteine, C145, and a distal cysteine, C117. Previous work proposed this disulfide provides the mechanism of protection from irreversible oxidation. M$^{pro}$ forms an obligate homodimer, and the C117-C145 structure shows disruption of interactions bridging the dimer interface, implying a correlation between oxidation and dimerization. We confirm dimer stability is weakened in solution upon oxidation. Finally, we observe the protein’s crystallization behavior is linked to its redox state. Oxidized M$^{pro}$ spontaneously forms a distinct, more loosely packed lattice. Seeding with crystals of this lattice yields a structure with an oxidation pattern incorporating one cysteine-lysine-cysteine (SONOS) and two lysine-cysteine (NOS) bridges. These structures further our understanding of the oxidative regulation of M$^{pro}$ and the crystallization conditions necessary to study this structurally.
000593910 536__ $$0G:(DE-HGF)POF4-633$$a633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)$$cPOF4-633$$fPOF IV$$x0
000593910 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000593910 536__ $$0G:(DE-HGF)2020_InternLabs-0011$$aInternLabs-0011 - HIR3X - Helmholtz International Laboratory on Reliability, Repetition, Results at the most advanced X-ray Sources (2020_InternLabs-0011)$$c2020_InternLabs-0011$$x2
000593910 536__ $$0G:(DE-HGF)FISCOV$$aFISCOV - FISCOV Helmholtz large research infrastructures in the fight against epidemic outbreaks (FISCOV)$$cFISCOV$$x3
000593910 536__ $$0G:(GEPRIS)390715994$$aDFG project G:(GEPRIS)390715994 - EXC 2056: CUI: Advanced Imaging of Matter (390715994)$$c390715994$$x4
000593910 536__ $$0G:(GEPRIS)194651731$$aDFG project G:(GEPRIS)194651731 - EXC 1074: Hamburger Zentrum für ultraschnelle Beobachtung (CUI): Struktur, Dynamik und Kontrolle von Materie auf atomarer Skala (194651731)$$c194651731$$x5
000593910 542__ $$2Crossref$$i2024-05-07$$uhttps://creativecommons.org/licenses/by/4.0
000593910 542__ $$2Crossref$$i2024-05-07$$uhttps://creativecommons.org/licenses/by/4.0
000593910 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000593910 693__ $$0EXP:(DE-H253)P-P11-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P11-20150101$$aPETRA III$$fPETRA Beamline P11$$x0
000593910 693__ $$0EXP:(DE-H253)XFEL-SPB-20150101$$1EXP:(DE-H253)XFEL-20150101$$5EXP:(DE-H253)XFEL-SPB-20150101$$6EXP:(DE-H253)XFEL-SASE1-20150101$$aXFEL$$eSPB: Single Particles, clusters & Biomolecules$$fSASE1$$x1
000593910 7001_ $$aSchubert, Robin$$b1
000593910 7001_ $$0P:(DE-H253)PIP1012087$$aOberthür, Dominik$$b2$$udesy
000593910 7001_ $$0P:(DE-H253)PIP1081165$$aGalchenkova, Marina$$b3$$udesy
000593910 7001_ $$0P:(DE-H253)PIP1093048$$aRahmani Mashhour, Aida$$b4$$udesy
000593910 7001_ $$0P:(DE-H253)PIP1082033$$aGuenther, Sebastian$$b5$$udesy
000593910 7001_ $$aChretien, Anaïs$$b6
000593910 7001_ $$aRound, Adam$$b7
000593910 7001_ $$aSeychell, Brandon Charles$$b8
000593910 7001_ $$aNorton-Baker, Brenna$$b9
000593910 7001_ $$aKim, Chan$$b10
000593910 7001_ $$aSchmidt, Christina$$b11
000593910 7001_ $$0P:(DE-H253)PIP1087183$$aKoua, Faisal H. M.$$b12
000593910 7001_ $$0P:(DE-H253)PIP1020246$$aTolstikova, Alexandra$$b13$$udesy
000593910 7001_ $$0P:(DE-H253)PIP1082863$$aEwert, Wiebke$$b14$$udesy
000593910 7001_ $$0P:(DE-H253)PIP1020365$$aPena Murillo, Gisel Esperanza$$b15
000593910 7001_ $$aMills, Grant$$b16
000593910 7001_ $$aKirkwood, Henry$$b17
000593910 7001_ $$aBrognaro, Hévila$$b18
000593910 7001_ $$aHan, Huijong$$b19
000593910 7001_ $$aKoliyadu, Jayanath$$b20
000593910 7001_ $$aSchulz, Joachim$$b21
000593910 7001_ $$aBielecki, Johan$$b22
000593910 7001_ $$0P:(DE-H253)PIP1031014$$aLieske, Julia$$b23
000593910 7001_ $$0P:(DE-H253)PIP1019206$$aMaracke, Julia$$b24$$udesy
000593910 7001_ $$0P:(DE-H253)PIP1020244$$aKnoska, Juraj$$b25
000593910 7001_ $$aLorenzen, Kristina$$b26
000593910 7001_ $$aBrings, Lea$$b27
000593910 7001_ $$aSikorski, Marcin$$b28
000593910 7001_ $$aKloos, Marco$$b29
000593910 7001_ $$0P:(DE-H253)PIP1017960$$aVakili, Mohammad$$b30$$udesy
000593910 7001_ $$0P:(DE-H253)PIP1021497$$aVagovic, Patrik$$b31$$udesy
000593910 7001_ $$0P:(DE-H253)PIP1094559$$aMiddendorf, Philipp$$b32$$udesy
000593910 7001_ $$ade Wijn, Raphael$$b33
000593910 7001_ $$aBean, Richard$$b34
000593910 7001_ $$aLetrun, Romain$$b35
000593910 7001_ $$aHan, Seonghyun$$b36
000593910 7001_ $$0P:(DE-H253)PIP1089186$$aFalke, Sven$$b37$$udesy
000593910 7001_ $$aGeng, Tian$$b38
000593910 7001_ $$aSato, Tokushi$$b39
000593910 7001_ $$aSrinivasan, Vasundara$$b40
000593910 7001_ $$aKim, Yoonhee$$b41
000593910 7001_ $$0P:(DE-H253)PIP1006155$$aYefanov, Oleksandr M.$$b42$$udesy
000593910 7001_ $$aGelisio, Luca$$b43
000593910 7001_ $$0P:(DE-H253)PIP1090581$$aBeck, Tobias$$b44
000593910 7001_ $$aDoré, Andrew S.$$b45
000593910 7001_ $$aMancuso, Adrian P.$$b46
000593910 7001_ $$aBetzel, Christian$$b47
000593910 7001_ $$0P:(DE-H253)PIP1006443$$aBajt, Saša$$b48
000593910 7001_ $$aRedecke, Lars$$b49
000593910 7001_ $$0P:(DE-H253)PIP1006324$$aChapman, Henry N.$$b50
000593910 7001_ $$0P:(DE-H253)PIP1006208$$aMeents, Alke$$b51
000593910 7001_ $$aTurk, Dušan$$b52
000593910 7001_ $$aHinrichs, Winfried$$b53
000593910 7001_ $$0P:(DE-H253)PIP1020283$$aLane, Thomas$$b54$$eCorresponding author$$udesy
000593910 77318 $$2Crossref$$3journal-article$$a10.1038/s41467-024-48109-3$$bSpringer Science and Business Media LLC$$d2024-05-07$$n1$$p3827$$tNature Communications$$v15$$x2041-1723$$y2024
000593910 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-024-48109-3$$gVol. 15, no. 1, p. 3827$$n1$$p3827$$tNature Communications$$v15$$x2041-1723$$y2024
000593910 8564_ $$uhttps://bib-pubdb1.desy.de/record/593910/files/Article%20Approval%20Service.pdf
000593910 8564_ $$uhttps://bib-pubdb1.desy.de/record/593910/files/HTML-Approval_of_scientific_publication.html
000593910 8564_ $$uhttps://bib-pubdb1.desy.de/record/593910/files/PDF-Approval_of_scientific_publication.pdf
000593910 8564_ $$uhttps://bib-pubdb1.desy.de/record/593910/files/Article%20Approval%20Service.pdf?subformat=pdfa$$xpdfa
000593910 8564_ $$uhttps://bib-pubdb1.desy.de/record/593910/files/manuscript%20before%20submission.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
000593910 8564_ $$uhttps://bib-pubdb1.desy.de/record/593910/files/published%20manuscript.pdf$$yRestricted$$zStatID:(DE-HGF)0599
000593910 8564_ $$uhttps://bib-pubdb1.desy.de/record/593910/files/manuscript%20before%20submission.pdf?subformat=pdfa$$xpdfa$$yOpenAccess$$zStatID:(DE-HGF)0510
000593910 8564_ $$uhttps://bib-pubdb1.desy.de/record/593910/files/published%20manuscript.pdf?subformat=pdfa$$xpdfa$$yRestricted$$zStatID:(DE-HGF)0599
000593910 8767_ $$8SN-2024-00558-b$$92024-05-03$$d2024-05-03$$eAPC$$jDEAL$$lSpringerNature$$v47.71$$zEinzelnachweis Rechnung SN-2024-00558-b
000593910 8767_ $$8SN-2024-00558-b$$92024-05-03$$d2024-05-03$$eAPC$$jStorniert$$lSpringerNature$$zDFG OAPK (Projekt)
000593910 8767_ $$8SN-2024-00558-b$$92024-05-03$$d2024-05-03$$eAPC$$jZahlung erfolgt$$lSpringerNature$$zDFG OAPK (Projekt)
000593910 8767_ $$92024$$d2024-05-29$$ePayment fee$$jDEAL$$lSpringerNature$$v0.35$$zMPDL Gebühr
000593910 8767_ $$8SN-2024-01904-b$$92024$$d2025-07-15$$eAPC$$jStorniert$$lSpringerNature$$v-30.13$$zKorrketur MwSt -> 7%
000593910 909CO $$ooai:bib-pubdb1.desy.de:593910$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000593910 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1082068$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000593910 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1082068$$aCentre for Free-Electron Laser Science$$b0$$kCFEL
000593910 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1012087$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000593910 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1012087$$aCentre for Free-Electron Laser Science$$b2$$kCFEL
000593910 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1012087$$aEuropean XFEL$$b2$$kXFEL.EU
000593910 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1081165$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000593910 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1081165$$aCentre for Free-Electron Laser Science$$b3$$kCFEL
000593910 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1081165$$aEuropean XFEL$$b3$$kXFEL.EU
000593910 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1093048$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000593910 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1093048$$aCentre for Free-Electron Laser Science$$b4$$kCFEL
000593910 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1082033$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000593910 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1082033$$aCentre for Free-Electron Laser Science$$b5$$kCFEL
000593910 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1082033$$aEuropean XFEL$$b5$$kXFEL.EU
000593910 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1087183$$aDeutsches Elektronen-Synchrotron$$b12$$kDESY
000593910 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1087183$$aCentre for Free-Electron Laser Science$$b12$$kCFEL
000593910 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1087183$$aEuropean XFEL$$b12$$kXFEL.EU
000593910 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1020246$$aDeutsches Elektronen-Synchrotron$$b13$$kDESY
000593910 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1020246$$aEuropean XFEL$$b13$$kXFEL.EU
000593910 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1082863$$aDeutsches Elektronen-Synchrotron$$b14$$kDESY
000593910 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1082863$$aCentre for Free-Electron Laser Science$$b14$$kCFEL
000593910 9101_ $$0I:(DE-588b)235011-7$$6P:(DE-H253)PIP1082863$$aEuropean Molecular Biology Laboratory$$b14$$kEMBL
000593910 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1020365$$aExternal Institute$$b15$$kExtern
000593910 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1020365$$aEuropean XFEL$$b15$$kXFEL.EU
000593910 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1020365$$aDeutsches Elektronen-Synchrotron$$b15$$kDESY
000593910 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1031014$$aDeutsches Elektronen-Synchrotron$$b23$$kDESY
000593910 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1031014$$aCentre for Free-Electron Laser Science$$b23$$kCFEL
000593910 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1031014$$aEuropean XFEL$$b23$$kXFEL.EU
000593910 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1019206$$aDeutsches Elektronen-Synchrotron$$b24$$kDESY
000593910 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1019206$$aCentre for Free-Electron Laser Science$$b24$$kCFEL
000593910 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1019206$$aEuropean XFEL$$b24$$kXFEL.EU
000593910 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1020244$$aEuropean XFEL$$b25$$kXFEL.EU
000593910 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1020244$$aExternal Institute$$b25$$kExtern
000593910 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1020244$$aDeutsches Elektronen-Synchrotron$$b25$$kDESY
000593910 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1017960$$aDeutsches Elektronen-Synchrotron$$b30$$kDESY
000593910 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1017960$$aCentre for Free-Electron Laser Science$$b30$$kCFEL
000593910 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1017960$$aEuropean XFEL$$b30$$kXFEL.EU
000593910 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1021497$$aDeutsches Elektronen-Synchrotron$$b31$$kDESY
000593910 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1021497$$aCentre for Free-Electron Laser Science$$b31$$kCFEL
000593910 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1021497$$aEuropean XFEL$$b31$$kXFEL.EU
000593910 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1094559$$aDeutsches Elektronen-Synchrotron$$b32$$kDESY
000593910 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1094559$$aCentre for Free-Electron Laser Science$$b32$$kCFEL
000593910 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1089186$$aDeutsches Elektronen-Synchrotron$$b37$$kDESY
000593910 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1089186$$aCentre for Free-Electron Laser Science$$b37$$kCFEL
000593910 9101_ $$0I:(DE-588b)235011-7$$6P:(DE-H253)PIP1089186$$aEuropean Molecular Biology Laboratory$$b37$$kEMBL
000593910 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1006155$$aDeutsches Elektronen-Synchrotron$$b42$$kDESY
000593910 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1006155$$aCentre for Free-Electron Laser Science$$b42$$kCFEL
000593910 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1006155$$aEuropean XFEL$$b42$$kXFEL.EU
000593910 9101_ $$0I:(DE-588b)235011-7$$6P:(DE-H253)PIP1090581$$aEuropean Molecular Biology Laboratory$$b44$$kEMBL
000593910 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1090581$$aEuropean XFEL$$b44$$kXFEL.EU
000593910 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1090581$$aExternal Institute$$b44$$kExtern
000593910 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1006443$$aDeutsches Elektronen-Synchrotron$$b48$$kDESY
000593910 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1006443$$aCentre for Free-Electron Laser Science$$b48$$kCFEL
000593910 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1006443$$aEuropean XFEL$$b48$$kXFEL.EU
000593910 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1006324$$aDeutsches Elektronen-Synchrotron$$b50$$kDESY
000593910 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1006324$$aCentre for Free-Electron Laser Science$$b50$$kCFEL
000593910 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1006324$$aEuropean XFEL$$b50$$kXFEL.EU
000593910 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1006208$$aDeutsches Elektronen-Synchrotron$$b51$$kDESY
000593910 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1006208$$aCentre for Free-Electron Laser Science$$b51$$kCFEL
000593910 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1006208$$aEuropean XFEL$$b51$$kXFEL.EU
000593910 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1020283$$aDeutsches Elektronen-Synchrotron$$b54$$kDESY
000593910 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1020283$$aCentre for Free-Electron Laser Science$$b54$$kCFEL
000593910 9131_ $$0G:(DE-HGF)POF4-633$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vLife Sciences – Building Blocks of Life: Structure and Function$$x0
000593910 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000593910 9141_ $$y2024
000593910 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000593910 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000593910 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
000593910 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-29
000593910 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000593910 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2025-01-02
000593910 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2022$$d2025-01-02
000593910 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2022$$d2025-01-02
000593910 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
000593910 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-01-30T07:48:07Z
000593910 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
000593910 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-01-30T07:48:07Z
000593910 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000593910 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000593910 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000593910 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2024-01-30T07:48:07Z
000593910 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-29
000593910 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2025-01-02
000593910 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
000593910 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
000593910 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-29
000593910 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000593910 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000593910 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000593910 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000593910 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000593910 9201_ $$0I:(DE-H253)CFEL-I-20161114$$kCFEL-I$$lFS-CFEL-1 (Group Leader: Henry Chapman)$$x0
000593910 9201_ $$0I:(DE-H253)FS-CFEL-1-PBIO-20210408$$kFS-CFEL-1-PBIO$$lFS-CFEL-1 Fachgruppe PBIO$$x1
000593910 9201_ $$0I:(DE-H253)FS-CFEL-1-BMX-20210408$$kFS-CFEL-1-BMX$$lFS-CFEL-1 Fachgruppe BMX$$x2
000593910 9201_ $$0I:(DE-H253)XFEL_E1_SPB_SFX-20210408$$kXFEL_E1_SPB/SFX$$lSPB/SFX$$x3
000593910 980__ $$ajournal
000593910 980__ $$aVDB
000593910 980__ $$aUNRESTRICTED
000593910 980__ $$aI:(DE-H253)CFEL-I-20161114
000593910 980__ $$aI:(DE-H253)FS-CFEL-1-PBIO-20210408
000593910 980__ $$aI:(DE-H253)FS-CFEL-1-BMX-20210408
000593910 980__ $$aI:(DE-H253)XFEL_E1_SPB_SFX-20210408
000593910 980__ $$aAPC
000593910 9801_ $$aAPC
000593910 9801_ $$aFullTexts
000593910 999C5 $$1Q Hu$$2Crossref$$9-- missing cx lookup --$$a10.1002/mco2.151$$pe151 -$$tMedComm$$uHu, Q. et al. The SARS-CoV-2 main protease (Mpro): structure, function, and emerging therapies for COVID-19. MedComm 3, e151 (2022).$$v3$$y2022
000593910 999C5 $$1L Zhang$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.abb3405$$p409 -$$tScience$$uZhang, L. et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors. Science 368, 409–412 (2020).$$v368$$y2020
000593910 999C5 $$1W Dai$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.abb4489$$p1331 -$$tScience$$uDai, W. et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 368, 1331–1335 (2020).$$v368$$y2020
000593910 999C5 $$2Crossref$$uU.S. Food and Drug Administration (FDA). Coronavirus (COVID-19) update: FDA authorizes first oral antiviral for treatment of COVID-19 (Food and Drug Administration, 2021).
000593910 999C5 $$1L Ding$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ab.2005.04.027$$p159 -$$tAnal. Biochem.$$uDing, L., Zhang, X. X., Wei, P., Fan, K. & Lai, L. The interaction between severe acute respiratory syndrome coronavirus 3C-like proteinase and a dimeric inhibitor by capillary electrophoresis. Anal. Biochem. 343, 159–65 (2005).$$v343$$y2005
000593910 999C5 $$1K Anand$$2Crossref$$9-- missing cx lookup --$$a10.1093/emboj/cdf327$$p3213 -$$tEMBO J.$$uAnand, K. et al. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra α-helical domain. EMBO J. 21, 3213–3224 (2002).$$v21$$y2002
000593910 999C5 $$1N Zhong$$2Crossref$$9-- missing cx lookup --$$a10.1002/pro.76$$p839 -$$tProtein Sci.$$uZhong, N. et al. C-terminal domain of SARS-CoV main protease can form a 3D domain-swapped dimer. Protein Sci. 18, 839–44 (2009).$$v18$$y2009
000593910 999C5 $$1A Miseta$$2Crossref$$9-- missing cx lookup --$$a10.1093/oxfordjournals.molbev.a026406$$p1232 -$$tMol. Biol. Evol.$$uMiseta, A. & Csutora, P. Relationship between the occurrence of cysteine in proteins and the complexity of organisms. Mol. Biol. Evol. 17, 1232–1239 (2000).$$v17$$y2000
000593910 999C5 $$1L-M Funk$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-023-44621-0$$tNat. Commun.$$uFunk, L.-M. et al. Multiple redox switches of the SARS-CoV-2 main protease in vitro provide opportunities for drug design. Nat. Commun. 15, 411 (2024).$$v15$$y2024
000593910 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1128/mBio.02094-21$$uDavis, D. A. et al. Regulation of the dimerization and activity of SARS-CoV-2 main protease through reversible glutathionylation of cysteine 300. mBio 12, 1–21 (2021).
000593910 999C5 $$1DW Kneller$$2Crossref$$9-- missing cx lookup --$$a10.1107/S2052252520012634$$p1028 -$$tIUCrJ$$uKneller, D. W. et al. Room-temperature X-ray crystallography reveals the oxidation and reactivity of cysteine residues in SARS-CoV-2 3CL Mpro: insights into enzyme mechanism and drug design. IUCrJ 7, 1028–1035 (2020).$$v7$$y2020
000593910 999C5 $$1F Rabe von Pappenheim$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41589-021-00966-5$$p368 -$$tNat. Chem. Biol.$$uRabe von Pappenheim, F. et al. Widespread occurrence of covalent lysine–cysteine redox switches in proteins. Nat. Chem. Biol. 18, 368–375 (2022).$$v18$$y2022
000593910 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acschembio.2c00695$$uYang, K. S. et al. A novel Y-shaped, S-O-N-O-S-bridged cross-link between three residues C22, C44, and K61 is frequently observed in the SARS-CoV-2 main protease. ACS Chem. Biol. 18, 449–455 (2022).
000593910 999C5 $$1N Tran$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-023-40023-4$$tNat. Commun.$$uTran, N. et al. The H163A mutation unravels an oxidized conformation of the SARS-CoV-2 main protease. Nat. Commun. 14, 5625 (2023).$$v14$$y2023
000593910 999C5 $$1KB Schwarz$$2Crossref$$9-- missing cx lookup --$$a10.1016/0891-5849(96)00131-1$$p641 -$$tFree Radic. Biol. Med.$$uSchwarz, K. B. Oxidative stress during viral infection: a review. Free Radic. Biol. Med. 21, 641–649 (1996).$$v21$$y1996
000593910 999C5 $$1DA Davis$$2Crossref$$9-- missing cx lookup --$$a10.1021/bi951525k$$p2482 -$$tBiochemistry$$uDavis, D. A. et al. Regulation of HIV-1 protease activity through cysteine modification. Biochemistry 35, 2482–2488 (1996).$$v35$$y1996
000593910 999C5 $$1DA Davis$$2Crossref$$9-- missing cx lookup --$$a10.1128/JVI.77.5.3319-3325.2003$$p3319 -$$tJ. Virol.$$uDavis, D. A. et al. Reversible oxidative modification as a mechanism for regulating retroviral protease dimerization and activation. J. Virol. 77, 3319–3325 (2003).$$v77$$y2003
000593910 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0013595$$uDaniels, S. I. et al. The initial step in human immunodeficiency virus type 1 GagProPol processing can be regulated by reversible oxidation. PLoS ONE 5, 1–9 (2010).
000593910 999C5 $$1R Cecchini$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.mehy.2020.110102$$p110102 -$$tMed. Hypotheses$$uCecchini, R. & Cecchini, A. L. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med. Hypotheses 143, 110102 (2020).$$v143$$y2020
000593910 999C5 $$2Crossref$$uReinke, P. Y. A. et al. Calpeptin is a potent cathepsin inhibitor and drug candidate for SARS-CoV-2 infections. Commun. Biol. 6, 1–13 (2023).
000593910 999C5 $$1J Barrila$$2Crossref$$9-- missing cx lookup --$$a10.1021/bi1002585$$p4308 -$$tBiochemistry$$uBarrila, J., Gabelli, S. B., Bacha, U., Amzel, L. M. & Freire, E. Mutation of Asn28 disrupts the dimerization and enzymatic activity of SARS 3CLpro. Biochemistry 49, 4308–4317 (2010).$$v49$$y2010
000593910 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-021-88630-9$$uSilvestrini, L. et al. The dimer-monomer equilibrium of SARS-CoV-2 main protease is affected by small molecule inhibitors. Sci. Rep. 11, 1–16 (2021).
000593910 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3390/cryst10070585$$uCaleman, C., Junior, F. J., Grånäs, O. & Martin, A. V. A perspective on molecular structure and bonding-breaking in radiation damage in serial femtosecond crystallography. Crystals 10, 1–16 (2020).
000593910 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1098/rstb.2013.0313$$uChapman, H. N., Caleman, C. & Timneanu, N. Diffraction before destruction. Philos. Trans. R. Soc. B Biol. Sci. 369, 1–13 (2014).
000593910 999C5 $$1K Nass$$2Crossref$$9-- missing cx lookup --$$a10.1107/S2059798319000317$$p211 -$$tActa Crystallogr. D Struct. Biol.$$uNass, K. Radiation damage in protein crystallography at X-ray free-electron lasers. Acta Crystallogr. D Struct. Biol. 75, 211–218 (2019).$$v75$$y2019
000593910 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.freeradbiomed.2019.05.035$$uUlrich, K. & Jakob, U. The role of thiols in antioxidant systems. Free Radic. Biol. Med. https://doi.org/10.1016/j.freeradbiomed.2019.05.035 (2019).
000593910 999C5 $$1H Han$$2Crossref$$uHan, H. et al. The XBI BioLab for life science experiments at the European XFEL. J. Synchrotron Radiat. 54, 7–21 (2021).$$y2021
000593910 999C5 $$1S Günther$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.abf7945$$p642 -$$tScience$$uGünther, S. et al. X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease. Science 372, 642–646 (2021).$$v372$$y2021
000593910 999C5 $$1AP Mancuso$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600577519003308$$p660 -$$tJ. Synchrotron Radiat.$$uMancuso, A. P. et al. The single particles, clusters and biomolecules and serial femtosecond crystallography instrument of the European XFEL: initial installation. J. Synchrotron Radiat. 26, 660–676 (2019).$$v26$$y2019
000593910 999C5 $$1B Henrich$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nima.2010.06.107$$p1 -$$tNucl. Instrum. Methods Phys. Res. A$$uHenrich, B. et al. The adaptive gain integrating pixel detector AGIPD a detector for the European XFEL. Nucl. Instrum. Methods Phys. Res. A 633, 1–4 (2011).$$v633$$y2011
000593910 999C5 $$2Crossref$$uFangohr, H. et al. Data analysis support in Karabo at European XFEL. In 16th International Conference on Accelerator and Large Experimental Control Systems 245–252 (Joint Accelerator Conferences Website, 2018).
000593910 999C5 $$1D Oberthuer$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41598-016-0028-x$$p1 -$$tSci. Rep.$$uOberthuer, D. et al. Double-flow focused liquid injector for efficient serial femtosecond crystallography. Sci. Rep. 7, 1–12 (2017). 2017 7:1.$$v7$$y2017
000593910 999C5 $$1J Knoška$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-020-14434-6$$p657 -$$tNat. Commun.$$uKnoška, J. et al. Ultracompact 3D microfluidics for time-resolved structural biology. Nat. Commun. 11, 657 (2020).$$v11$$y2020
000593910 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600577521013370$$uVakili, M. et al. 3D printed devices and infrastructure for liquid sample delivery at the European XFEL. J. Synchrotron Radiat. 29, 331–346 (2022).
000593910 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjp/i2016-16056-0$$uBurkhardt, A. et al. Status of the crystallography beamlines at PETRA III. Eur. Phys. J. Plus 131, 1–9 (2016).
000593910 999C5 $$1V Mariani$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600576716007469$$p1073 -$$tJ. Appl. Crystallogr.$$uMariani, V. et al. OnDA: online data analysis and feedback for serial X-ray imaging. J. Appl. Crystallogr. 49, 1073–1080 (2016).$$v49$$y2016
000593910 999C5 $$1O Yefanov$$2Crossref$$9-- missing cx lookup --$$a10.1364/OE.23.028459$$p28459 -$$tOpt. Express$$uYefanov, O. et al. Accurate determination of segmented X-ray detector geometry. Opt. Express 23, 28459–28470 (2015).$$v23$$y2015
000593910 999C5 $$1A Barty$$2Crossref$$9-- missing cx lookup --$$a10.1107/S1600576714007626$$p1118 -$$tJ. Appl. Crystallogr.$$uBarty, A. et al. Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data. J. Appl. Crystallogr. 47, 1118–1131 (2014).$$v47$$y2014
000593910 999C5 $$1TA White$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0021889812002312$$p335 -$$tJ. Appl. Crystallogr.$$uWhite, T. A. et al. CrystFEL: a software suite for snapshot serial crystallography. J. Appl. Crystallogr. 45, 335–341 (2012).$$v45$$y2012
000593910 999C5 $$1AGW Leslie$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-1-4020-6316-9_4$$p41 -$$tEvol. Methods Macromol. Crystallogr.$$uLeslie, A. G. W. & Powell, H. R. Processing diffraction data with mosflm. Evol. Methods Macromol. Crystallogr. 245, 41–51 (2007).$$v245$$y2007
000593910 999C5 $$1Y Gevorkov$$2Crossref$$9-- missing cx lookup --$$a10.1107/S2053273319010593$$p694 -$$tActa Crystallogr. A Found. Adv.$$uGevorkov, Y. et al. XGANDALF - extended gradient descent algorithm for lattice finding. Acta Crystallogr. A Found. Adv. 75, 694–704 (2019).$$v75$$y2019
000593910 999C5 $$1W Kabsch$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0907444909047337$$p125 -$$tActa Crystallogr. D Biol. Crystallogr.$$uKabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).$$v66$$y2010
000593910 999C5 $$1PA Karplus$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1218231$$p1030 -$$tScience$$uKarplus, P. A. & Diederichs, K. Linking crystallographic model and data quality. Science 336, 1030–1033 (2012).$$v336$$y2012
000593910 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmb.2007.05.022$$uKrissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).
000593910 999C5 $$1P Emsley$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0907444910007493$$p486 -$$tActa Crystallogr. D Biol. Crystallogr.$$uEmsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).$$v66$$y2010
000593910 999C5 $$1D Liebschner$$2Crossref$$9-- missing cx lookup --$$a10.1107/S2059798319011471$$p861 -$$tActa Crystallogr. D Struct. Biol.$$uLiebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).$$v75$$y2019
000593910 999C5 $$1DH Juers$$2Crossref$$9-- missing cx lookup --$$a10.1107/S160057671402281X$$p2105 -$$tJ. Appl. Crystallogr.$$uJuers, D. H. & Ruffin, J. MAP-CHANNELS: a computation tool to aid in the visualization and characterization of solvent channels in macromolecular crystals. J. Appl. Crystallogr. 47, 2105–2108 (2014).$$v47$$y2014
000593910 999C5 $$2Crossref$$uDelano, W. L. The PyMOL molecular graphics system. CCP4 Newslett. 40, 1–9 (2002).