001     593578
005     20240707063342.0
024 7 _ |a Buhmann:2023kdg
|2 INSPIRETeX
024 7 _ |a inspire:2696622
|2 inspire
024 7 _ |a arXiv:2309.05704
|2 arXiv
024 7 _ |a 10.3204/PUBDB-2023-05463
|2 datacite_doi
037 _ _ |a PUBDB-2023-05463
041 _ _ |a English
088 _ _ |a DESY-23-130
|2 DESY
088 _ _ |a arXiv:2309.05704
|2 arXiv
100 1 _ |a Buhmann, Erik
|0 P:(DE-H253)PIP1018807
|b 0
|e Corresponding author
245 _ _ |a CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation
260 _ _ |c 2023
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1698850195_1121333
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a 30 pages, 7 figures, 3 tables, code available at https://github.com/FLC-QU-hep/CaloClouds-2
520 _ _ |a Fast simulation of the energy depositions in high-granular detectors is needed for future collider experiments with ever increasing luminosities. Generative machine learning (ML) models have been shown to speed up and augment the traditional simulation chain in physics analysis. However, the majority of previous efforts were limited to models relying on fixed, regular detector readout geometries. A major advancement is the recently introduced CaloClouds model, a geometry-independent diffusion model, which generates calorimeter showers as point clouds for the electromagnetic calorimeter of the envisioned International Large Detector (ILD). In this work, we introduce CaloClouds II which features a number of key improvements. This includes continuous time score-based modelling, which allows for a 25 step sampling with comparable fidelity to CaloClouds while yielding a $6\times$ speed-up over Geant4 on a single CPU ($5\times$ over CaloClouds). We further distill the diffusion model into a consistency model allowing for accurate sampling in a single step and resulting in a $46\times$ ($37\times$) speed-up. This constitutes the first application of consistency distillation for the generation of calorimeter showers.
536 _ _ |a 623 - Data Management and Analysis (POF4-623)
|0 G:(DE-HGF)POF4-623
|c POF4-623
|f POF IV
|x 0
536 _ _ |a AIDAinnova - Advancement and Innovation for Detectors at Accelerators (101004761)
|0 G:(EU-Grant)101004761
|c 101004761
|f H2020-INFRAINNOV-2020-2
|x 1
536 _ _ |a 05D23GU4 - Verbundprojekt 05D2022 - KISS: Künstliche Intelligenz zur schnellen Simulation von wissenschaftlichen Daten. Teilprojekt 1. (BMBF-05D23GU4)
|0 G:(DE-Ds200)BMBF-05D23GU4
|c BMBF-05D23GU4
|f 05D23GU4
|x 2
588 _ _ |a Dataset connected to INSPIRE
650 _ 7 |a diffusion, model
|2 INSPIRE
650 _ 7 |a calorimeter, electromagnetic
|2 INSPIRE
650 _ 7 |a showers
|2 INSPIRE
650 _ 7 |a geometry
|2 INSPIRE
650 _ 7 |a readout
|2 INSPIRE
650 _ 7 |a machine learning
|2 INSPIRE
650 _ 7 |a ILD detector
|2 INSPIRE
650 _ 7 |a cloud
|2 INSPIRE
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Gaede, Frank
|0 P:(DE-H253)PIP1002530
|b 1
700 1 _ |a Kasieczka, Gregor
|0 P:(DE-H253)PIP1081743
|b 2
700 1 _ |a Korol, Anatolii
|0 P:(DE-H253)PIP1090878
|b 3
700 1 _ |a Korcari, William
|0 P:(DE-H253)PIP1094581
|b 4
700 1 _ |a Krüger, Katja
|0 P:(DE-H253)PIP1000475
|b 5
700 1 _ |a McKeown, Peter
|0 P:(DE-H253)PIP1030902
|b 6
856 4 _ |u https://bib-pubdb1.desy.de/record/593578/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/593578/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/593578/files/2309.05704v1.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/593578/files/2309.05704v1.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:593578
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1018807
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1002530
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1081743
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1090878
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1090878
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1094581
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1000475
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1030902
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-623
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Data Management and Analysis
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Published
|0 StatID:(DE-HGF)0580
|2 StatID
920 1 _ |0 I:(DE-H253)FTX-20210408
|k FTX
|l Technol. zukünft. Teilchenph. Experim.
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FTX-20210408
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21