Home > Publications database > Evolution of the ionisation energy with the stepwise growth of the chiral clusters of [4]helicene > print |
001 | 593053 | ||
005 | 20250715171130.0 | ||
024 | 7 | _ | |a 10.1038/s41467-024-48778-0 |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2023-05256 |2 datacite_doi |
024 | 7 | _ | |a altmetric:164425329 |2 altmetric |
024 | 7 | _ | |a pmid:38858352 |2 pmid |
024 | 7 | _ | |a WOS:001244155400002 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4399497589 |
037 | _ | _ | |a PUBDB-2023-05256 |
041 | _ | _ | |a English |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Rosa Domingos, Sérgio Miguel |0 P:(DE-H253)PIP1023833 |b 0 |e Corresponding author |
245 | _ | _ | |a Evolution of the ionisation energy with the stepwise growth of the chiral clusters of [4]helicene |
260 | _ | _ | |a [London] |c 2024 |b Nature Publishing Group UK |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1733316223_885419 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We report on photoelectron-photoion coincidence (PEPICO) spectroscopy experiments on [4]helicene performed with a vacuum ultraviolet synchrotron beamline. Aggregates (up to the heptamer) of [4]helicene, the smallest polycyclic aromatic hydrocarbon with helical chirality, were produced and investigated with a combined experimental and theoretical approach using several state-of-the-art quantum-chemical methodologies. The ionisation onsets are extracted for each cluster size from the mass-selected photoelectron spectra and compared with calculations of vertical ionisation energies. We explore the complex aggregation topologies emerging from the multitude of isomers formed through clustering of P and M, the two enantiomers of [4]helicene.The very satisfactory benchmarking between experimental ionisation onsets vs. predicted ionisation energies allows the identification of theoretically predicted potential aggregation motifs and corresponding energetic ordering of chiral clusters. Our structural models suggest that a homochiral aggregation route is energetically favoured over heterochiral arrangements with increasing cluster size, hinting at potential symmetry breaking in PAH cluster formation at the scale of small grains. |
536 | _ | _ | |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631) |0 G:(DE-HGF)POF4-631 |c POF4-631 |f POF IV |x 0 |
536 | _ | _ | |a DFG project G:(GEPRIS)328961117 - SFB 1319: Extremes Licht zur Analyse und Kontrolle molekularer Chiralität (ELCH) (328961117) |0 G:(GEPRIS)328961117 |c 328961117 |x 1 |
536 | _ | _ | |a GRK 2678 - GRK 2678: Funktionelle pi-Systeme: Aktivierung, Wechselwirkungen und Anwendungen (pi-Sys) (437785492) |0 G:(GEPRIS)437785492 |c 437785492 |x 2 |
542 | _ | _ | |i 2024-06-10 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
542 | _ | _ | |i 2024-06-10 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Tikhonov, Denis |0 P:(DE-H253)PIP1084521 |b 1 |e Corresponding author |
700 | 1 | _ | |a Steber, Amanda |0 P:(DE-H253)PIP1023834 |b 2 |e Corresponding author |u desy |
700 | 1 | _ | |a Eschenbach, Patrick |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Gruet, Sebastien Patrice |0 P:(DE-H253)PIP1028010 |b 4 |
700 | 1 | _ | |a Hrodmarsson, Helgi R. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Martin, Kévin |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Garcia, Gustavo A. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Nahon, Laurent |0 P:(DE-H253)PIP1086983 |b 8 |
700 | 1 | _ | |a Neugebauer, Johannes |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Avarvari, Narcis |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Schnell, Melanie |0 P:(DE-H253)PIP1013514 |b 11 |e Corresponding author |
773 | 1 | 8 | |a 10.1038/s41467-024-48778-0 |b Springer Science and Business Media LLC |d 2024-06-10 |n 1 |p 4928 |3 journal-article |2 Crossref |t Nature Communications |v 15 |y 2024 |x 2041-1723 |
773 | _ | _ | |a 10.1038/s41467-024-48778-0 |g Vol. 15, no. 1, p. 4928 |0 PERI:(DE-600)2553671-0 |n 1 |p 4928 |t Nature Communications |v 15 |y 2024 |x 2041-1723 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/593053/files/Article%20Approval%20Service.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/593053/files/HTML-Approval_of_scientific_publication.html |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/593053/files/PDF-Approval_of_scientific_publication.pdf |
856 | 4 | _ | |x pdfa |u https://bib-pubdb1.desy.de/record/593053/files/Article%20Approval%20Service.pdf?subformat=pdfa |
856 | 4 | _ | |y Restricted |u https://bib-pubdb1.desy.de/record/593053/files/Non_published_version.pdf |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/593053/files/Published%20Version_Evolution.pdf |
856 | 4 | _ | |y Restricted |x pdfa |u https://bib-pubdb1.desy.de/record/593053/files/Non_published_version.pdf?subformat=pdfa |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/593053/files/Published%20Version_Evolution.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:593053 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1023833 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1023833 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 1 |6 P:(DE-H253)PIP1084521 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1023834 |
910 | 1 | _ | |a Centre for Free-Electron Laser Science |0 I:(DE-H253)_CFEL-20120731 |k CFEL |b 2 |6 P:(DE-H253)PIP1023834 |
910 | 1 | _ | |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften |0 I:(DE-588b)2019024-4 |k MPG |b 2 |6 P:(DE-H253)PIP1023834 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1028010 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 8 |6 P:(DE-H253)PIP1086983 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 11 |6 P:(DE-H253)PIP1013514 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-631 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Matter – Dynamics, Mechanisms and Control |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-29 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-29 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-29 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
915 | p | c | |a DEAL: Springer Nature 2020 |2 APC |0 PC:(DE-HGF)0113 |
920 | 1 | _ | |0 I:(DE-H253)FS-SMP-20171124 |k FS-SMP |l Spectroscopy of molecular processes |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)FS-SMP-20171124 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1002/cber.19030360481 |9 -- missing cx lookup -- |1 J Meisenheimer |p 4153 - |2 Crossref |u Meisenheimer, J. & Witte, K. Reduction von 2-Nitronaphtalin. Ber. der. Dtsch. Chemischen. Ges. 36, 4153–4164 (1903). |t Ber. der. Dtsch. Chemischen. Ges |v 36 |y 1903 |
999 | C | 5 | |a 10.1021/cr200087r |9 -- missing cx lookup -- |1 Y Shen |p 1463 - |2 Crossref |u Shen, Y. & Chen, C.-F. Helicenes: synthesis and applications. Chem. Rev. 112, 1463–1535 (2012). |t Chem. Rev. |v 112 |y 2012 |
999 | C | 5 | |a 10.1021/acs.chemrev.8b00770 |9 -- missing cx lookup -- |1 F Pop |p 8435 - |2 Crossref |u Pop, F., Zigon, N. & Avarvari, N. Main-group-based electro- and photoactive chiral materials. Chem. Rev. 119, 8435–8478 (2019). |t Chem. Rev. |v 119 |y 2019 |
999 | C | 5 | |a 10.1021/acs.chemrev.0c01017 |9 -- missing cx lookup -- |1 T Mori |p 2373 - |2 Crossref |u Mori, T. Chiroptical properties of symmetric double, triple, and multiple helicenes. Chem. Rev. 121, 2373–2412 (2021). |t Chem. Rev. |v 121 |y 2021 |
999 | C | 5 | |a 10.1021/acsearthspacechem.0c00235 |9 -- missing cx lookup -- |1 JO Ona-Ruales |p 381 - |2 Crossref |u Ona-Ruales, J. O., Ruiz-Morales, Y. & Alvarez-Ramírez, F. The helicenes: potential carriers of diffuse interstellar bands. ACS Earth Space Chem. 5, 381–390 (2021). |t ACS Earth Space Chem. |v 5 |y 2021 |
999 | C | 5 | |a 10.1051/eas/1146024 |9 -- missing cx lookup -- |2 Crossref |u Rapacioli, M. et al. PAH-related Very Small Grains in Photodissociation Regions: Implications from Molecular Simulations. 223–234. (EDP Sciences, Les Ulis, 2011). |
999 | C | 5 | |a 10.1146/annurev.astro.46.060407.145211 |9 -- missing cx lookup -- |1 A Tielens |p 289 - |2 Crossref |u Tielens, A. Interstellar polycyclic aromatic hydrocarbon molecules. Annu. Rev. Astron. Astrophys. 46, 289–337 (2008). |t Annu. Rev. Astron. Astrophys. |v 46 |y 2008 |
999 | C | 5 | |a 10.1051/0004-6361/201116602 |9 -- missing cx lookup -- |1 R Gredel |p A26 - |2 Crossref |u Gredel, R. et al. Abundances of PAHs in the ISM: confronting observations with experimental results. Astron. Astrophys. 530, A26 (2011). |t Astron. Astrophys. |v 530 |y 2011 |
999 | C | 5 | |a 10.1051/0004-6361/202140590 |9 -- missing cx lookup -- |1 K Lange |p A21 - |2 Crossref |u Lange, K., Dominik, C. & Tielens, A. G. G. M. Stability of polycyclic aromatic hydrocarbon clusters in protoplanetary discs. Astron. Astrophys. 653, A21 (2021). |t Astron. Astrophys. |v 653 |y 2021 |
999 | C | 5 | |a 10.1051/0004-6361/201935085 |9 -- missing cx lookup -- |1 S Foschino |p A84 - |2 Crossref |u Foschino, S., Berné, O. & Joblin, C. Learning mid-IR emission spectra of polycyclic aromatic hydrocarbon populations from observations. Astron. Astrophys. 632, A84 (2019). |t Astron. Astrophys. |v 632 |y 2019 |
999 | C | 5 | |a 10.1051/0004-6361/202141156 |9 -- missing cx lookup -- |1 J Cernicharo |p L15 - |2 Crossref |u Cernicharo, J. et al. Pure hydrocarbon cycles in TMC-1: discovery of ethynyl cyclopropenylidene, cyclopentadiene, and indene. Astron. Astrophys. 649, L15 (2021). |t Astron. Astrophys. |v 649 |y 2021 |
999 | C | 5 | |a 10.1038/nature14566 |9 -- missing cx lookup -- |1 E Campbell |p 322 - |2 Crossref |u Campbell, E., Holz, M., Gerlich, D. & Maier, J. Laboratory confirmation of C60+ as the carrier of two diffuse interstellar bands. Nature 523, 322–323 (2015). |t Nature |v 523 |y 2015 |
999 | C | 5 | |a 10.1126/science.1192035 |9 -- missing cx lookup -- |1 J Cami |p 1180 - |2 Crossref |u Cami, J., Bernard-Salas, J., Peeters, E. & E. Malek, S. Detection of C60 and C70 in a young planetary nebula. Science 329, 1180–1182 (2010). |t Science |v 329 |y 2010 |
999 | C | 5 | |a 10.1126/science.abb7535 |9 -- missing cx lookup -- |1 BA McGuire |p 1265 - |2 Crossref |u McGuire, B. A. et al. Detection of two interstellar polycyclic aromatic hydrocarbons via spectral matched filtering. Science 371, 1265–1269 (2021). |t Science |v 371 |y 2021 |
999 | C | 5 | |a 10.3847/2041-8213/ac92f4 |9 -- missing cx lookup -- |1 ML Sita |p L12 - |2 Crossref |u Sita, M. L. et al. Discovery of interstellar 2-cyanoindene (2-C9H7CN) in GOTHAM observations of TMC-1. Astrophys. J. Lett. 938, L12 (2022). |t Astrophys. J. Lett. |v 938 |y 2022 |
999 | C | 5 | |a 10.1021/ja0426239 |9 -- missing cx lookup -- |1 FJ Lovas |p 4345 - |2 Crossref |u Lovas, F. J. et al. Interstellar chemistry: a strategy for detecting polycyclic aromatic hydrocarbons in space. J. Am. Chem. Soc. 127, 4345–4349 (2005). |t J. Am. Chem. Soc. |v 127 |y 2005 |
999 | C | 5 | |a 10.1086/518026 |9 -- missing cx lookup -- |1 S Thorwirth |p 1309 - |2 Crossref |u Thorwirth, S., Theulé, P., Gottlieb, C. A., McCarthy, M. C. & Thaddeus, P. Rotational spectra of small PAHs: acenaphthene, acenaphthylene, azulene, and fluorene. Astrophys. J. 662, 1309 (2007). |t Astrophys. J. |v 662 |y 2007 |
999 | C | 5 | |a 10.1126/science.aao4890 |9 -- missing cx lookup -- |1 BA McGuire |p 202 - |2 Crossref |u McGuire, B. A. et al. Detection of the aromatic molecule benzonitrile (c-C6H5CN) in the interstellar medium. Science 359, 202–205 (2018). |t Science |v 359 |y 2018 |
999 | C | 5 | |a 10.1039/D0CP03523H |9 -- missing cx lookup -- |1 P Stahl |p 21474 - |2 Crossref |u Stahl, P. et al. Laboratory blueprints for interstellar searches of aromatic chiral molecules: rotational signatures of styrene oxide. Phys. Chem. Chem. Phys. 22, 21474–21487 (2020). |t Phys. Chem. Chem. Phys. |v 22 |y 2020 |
999 | C | 5 | |a 10.1051/0004-6361/202243171 |9 -- missing cx lookup -- |1 O Berné |p A159 - |2 Crossref |u Berné, O., Foschino, S., Jalabert, F. & Joblin, C. Contribution of polycyclic aromatic hydrocarbon ionization to neutral gas heating in galaxies: model versus observations. Astron. Astrophys. 667, A159 (2022). |t Astron. Astrophys. |v 667 |y 2022 |
999 | C | 5 | |a 10.1051/0004-6361:20065412 |9 -- missing cx lookup -- |1 M Rapacioli |p 519 - |2 Crossref |u Rapacioli, M. et al. Formation and destruction of polycyclic aromatic hydrocarbon clusters in the interstellar medium. Astron. Astrophys. 460, 519–531 (2006). |t Astron. Astrophys. |v 460 |y 2006 |
999 | C | 5 | |a 10.1021/acs.jpclett.7b01546 |9 -- missing cx lookup -- |1 C Joblin |p 3697 - |2 Crossref |u Joblin, C. et al. Size effect in the ionization energy of PAH clusters. J. Phys. Chem. Lett. 8, 3697–3702 (2017). |t J. Phys. Chem. Lett. |v 8 |y 2017 |
999 | C | 5 | |a 10.1017/S1743921308021960 |9 -- missing cx lookup -- |1 F Salama |p 357 - |2 Crossref |u Salama, F. PAHs in astronomy—a review. Proc. Int. Astron. Union 4, 357–366 (2008). |t Proc. Int. Astron. Union |v 4 |y 2008 |
999 | C | 5 | |a 10.1016/j.molap.2017.01.001 |9 -- missing cx lookup -- |1 A Potapov |p 16 - |2 Crossref |u Potapov, A. Weakly bound molecular complexes in the laboratory and in the interstellar medium: a lost interest? Mol. Astrophys. 6, 16–21 (2017). |t Mol. Astrophys. |v 6 |y 2017 |
999 | C | 5 | |a 10.1063/1.478522 |9 -- missing cx lookup -- |1 C Adamo |p 6158 - |2 Crossref |u Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999). |t J. Chem. Phys. |v 110 |y 1999 |
999 | C | 5 | |a 10.1039/b508541a |9 -- missing cx lookup -- |1 F Weigend |p 3297 - |2 Crossref |u Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005). |t Phys. Chem. Chem. Phys. |v 7 |y 2005 |
999 | C | 5 | |a 10.1039/D2CP05679H |9 -- missing cx lookup -- |1 GA Garcia |p 4501 - |2 Crossref |u Garcia, G. A. et al. Electronic effects in the dissociative ionisation of pyrene clusters. Phys. Chem. Chem. Phys. 25, 4501–4510 (2023). |t Phys. Chem. Chem. Phys. |v 25 |y 2023 |
999 | C | 5 | |a 10.1021/acs.jctc.9b01107 |9 -- missing cx lookup -- |1 J Zhang |p 3947 - |2 Crossref |u Zhang, J., Glezakou, V.-A., Rousseau, R. & Nguyen, M.-T. NWPEsSe: an adaptive-learning global optimization algorithm for nanosized cluster systems. J. Chem. Theory Comput. 16, 3947–3958 (2020). |t J. Chem. Theory Comput. |v 16 |y 2020 |
999 | C | 5 | |2 Crossref |u Averkiev, B. B. Coalescence-Kick, https://github.com/averkiev75/Coalescence-Kick, (2013). |
999 | C | 5 | |a 10.1021/acs.jctc.8b01176 |9 -- missing cx lookup -- |1 C Bannwarth |p 1652 - |2 Crossref |u Bannwarth, C., Ehlert, S. & Grimme, S. GFN2-xTB-an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 15, 1652–1671 (2019). |t J. Chem. Theory Comput. |v 15 |y 2019 |
999 | C | 5 | |a 10.1002/anie.201812556 |9 -- missing cx lookup -- |1 M Fatima |p 3108 - |2 Crossref |u Fatima, M. et al. Rotational signatures of dispersive stacking in the formation of aromatic dimers. Angew. Chem. Int. Ed. 58, 3108–3113 (2019). |t Angew. Chem. Int. Ed. |v 58 |y 2019 |
999 | C | 5 | |a 10.1063/1.4773581 |9 -- missing cx lookup -- |1 C Riplinger |p 034106 - |2 Crossref |u Riplinger, C. & Neese, F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 138, 034106 (2013). |t J. Chem. Phys. |v 138 |y 2013 |
999 | C | 5 | |a 10.1063/1.4821834 |9 -- missing cx lookup -- |1 C Riplinger |p 134101 - |2 Crossref |u Riplinger, C., Sandhoefer, B., Hansen, A. & Neese, F. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 139, 134101 (2013). |t J. Chem. Phys. |v 139 |y 2013 |
999 | C | 5 | |a 10.1063/1.5011798 |9 -- missing cx lookup -- |2 Crossref |u Guo, Y. et al. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)]. J. Chem. Phys. 148, 011101 (2018). |
999 | C | 5 | |a 10.1016/0009-2614(87)80218-X |9 -- missing cx lookup -- |1 S Pal |p 273 - |2 Crossref |u Pal, S., Rittby, M., Bartlett, R. J., Sinha, D. & Mukherjee, D. Multireference coupled-cluster methods using an incomplete model space: application to ionization potentials and excitation energies of formaldehyde. Chem. Phys. Lett. 137, 273–278 (1987). |t Chem. Phys. Lett. |v 137 |y 1987 |
999 | C | 5 | |a 10.1063/1.468022 |9 -- missing cx lookup -- |1 JF Stanton |p 8938 - |2 Crossref |u Stanton, J. F. & Gauss, J. Analytic energy derivatives for ionized states described by the equation of motion coupled cluster method. J. Chem. Phys. 101, 8938–8944 (1994). |t J. Chem. Phys. |v 101 |y 1994 |
999 | C | 5 | |a 10.1146/annurev.physchem.59.032607.093602 |9 -- missing cx lookup -- |1 AI Krylov |p 433 - |2 Crossref |u Krylov, A. I. Equation-of-motion coupled-cluster methods for open-shell and electronically excited species: the Hitchhiker’s guide to fock space. Ann. Rev. Phys. Chem. 59, 433–462 (2008). |t Ann. Rev. Phys. Chem. |v 59 |y 2008 |
999 | C | 5 | |a 10.1063/1.3666005 |9 -- missing cx lookup -- |1 M Pavanello |p 234103 - |2 Crossref |u Pavanello, M. & Neugebauer, J. Modelling charge transfer reactions with the frozen density embedding formalism. J. Chem. Phys. 135, 234103 (2011). |t J. Chem. Phys. |v 135 |y 2011 |
999 | C | 5 | |a 10.1063/1.4789418 |9 -- missing cx lookup -- |1 M Pavanello |p 054101 - |2 Crossref |u Pavanello, M., Voorhis, T. V., Visscher, L. & Neugebauer, J. An accurate and linear-scaling method for calculating charge-transfer excitation energies and diabatic couplings. J. Chem. Phys. 138, 054101 (2013). |t J. Chem. Phys. |v 138 |y 2013 |
999 | C | 5 | |a 10.1063/1.4871301 |9 -- missing cx lookup -- |1 A Solovyeva |p 164103 - |2 Crossref |u Solovyeva, A., Pavanello, M. & Neugebauer, J. Describing long-range charge-separation processes with subsystem density-functional theory. J. Chem. Phys. 140, 164103 (2014). |t J. Chem. Phys. |v 140 |y 2014 |
999 | C | 5 | |a 10.1021/jp511275e |9 -- missing cx lookup -- |1 P Ramos |p 7541 - |2 Crossref |u Ramos, P., Papadakis, M. & Pavanello, M. Performance of frozen density embedding for modeling hole transfer reactions. J. Phys. Chem. B 119, 7541–7557 (2015). |t J. Phys. Chem. B |v 119 |y 2015 |
999 | C | 5 | |a 10.1021/acs.jctc.0c01307 |9 -- missing cx lookup -- |1 J Tölle |p 2186 - |2 Crossref |u Tölle, J., Deilmann, T., Rohlfing, M. & Neugebauer, J. Subsystem-based GW/Bethe-Salpeter equation. J. Chem. Theory Comput. 17, 2186–2199 (2021). |t J. Chem. Theory Comput. |v 17 |y 2021 |
999 | C | 5 | |a 10.1039/C5CP06344B |9 -- missing cx lookup -- |1 L Dontot |p 3545 - |2 Crossref |u Dontot, L., Suaud, N., Rapacioli, M. & Spiegelman, F. An extended DFTB-CI model for charge-transfer excited states in cationic molecular clusters: model studies versus ab initio calculations in small PAH clusters. Phys. Chem. Chem. Phys. 18, 3545–3557 (2016). |t Phys. Chem. Chem. Phys. |v 18 |y 2016 |
999 | C | 5 | |a 10.1016/j.plrev.2011.08.005 |9 -- missing cx lookup -- |1 C Meinert |p 307 - |2 Crossref |u Meinert, C. et al. Photochirogenesis: Photochemical models on the absolute asymmetric formation of amino acids in interstellar space. Phys. Life Rev. 8, 307–330 (2011). |t Phys. Life Rev. |v 8 |y 2011 |
999 | C | 5 | |a 10.1101/cshperspect.a002147 |9 -- missing cx lookup -- |1 DG Blackmond |p a002147 - |2 Crossref |u Blackmond, D. G. The origin of biological homochirality. Cold Spring Harb. Perspect. Biol. 2, a002147 (2010). |t Cold Spring Harb. Perspect. Biol. |v 2 |y 2010 |
999 | C | 5 | |a 10.1107/S0909049512010588 |9 -- missing cx lookup -- |1 L Nahon |p 508 - |2 Crossref |u Nahon, L. et al. DESIRS: a state-of-the-art VUV beamline featuring high resolution and variable polarization for spectroscopy and dichroism at SOLEIL. J. Synchrotron Rad. 619, 508–520 (2012). |t J. Synchrotron Rad. |v 619 |y 2012 |
999 | C | 5 | |a 10.1063/1.4807751 |9 -- missing cx lookup -- |1 GA Garcia |p 053112 - |2 Crossref |u Garcia, G. A., Cunha de Miranda, B. K., Tia, M., Daly, S. & Nahon, L. DELICIOUS III: a multipurpose double imaging particle coincidence spectrometer for gas phase vacuum ultraviolet photodynamics studies. Rev. Sci. Instrum. 84, 053112 (2013). |t Rev. Sci. Instrum. |v 84 |y 2013 |
999 | C | 5 | |a 10.1063/1.4937624 |9 -- missing cx lookup -- |1 X Tang |p 123108 - |2 Crossref |u Tang, X., Garcia, G. A., Gil, J.-F. & Nahon, L. Vacuum upgrade and enhanced performances of the double imaging electron/ion coincidence end-station at the vacuum ultraviolet beamline DESIRS. Rev. Sci. Instrum. 86, 123108 (2015). |t Rev. Sci. Instrum. |v 86 |y 2015 |
999 | C | 5 | |a 10.1002/wcms.1546 |9 -- missing cx lookup -- |1 S Gozem |p e1546 - |2 Crossref |u Gozem, S. & Krylov, A. I. The ezSpectra suite: An easy-to-use toolkit for spectroscopy modeling. WIREs Comput. Mol. Sci. 12, e1546 (2022). |t WIREs Comput. Mol. Sci. |v 12 |y 2022 |
999 | C | 5 | |a 10.1039/C5CP04060D |9 -- missing cx lookup -- |1 J Zhang |p 24173 - |2 Crossref |u Zhang, J. & Dolg, M. ABCluster: the artificial bee colony algorithm for cluster global optimization. Phys. Chem. Chem. Phys. 17, 24173–24181 (2015). |t Phys. Chem. Chem. Phys. |v 17 |y 2015 |
999 | C | 5 | |a 10.1039/C5CP06313B |9 -- missing cx lookup -- |1 J Zhang |p 3003 - |2 Crossref |u Zhang, J. & Dolg, M. Global optimization of clusters of rigid molecules using the artificial bee colony algorithm. Phys. Chem. Chem. Phys. 18, 3003–3010 (2016). |t Phys. Chem. Chem. Phys. |v 18 |y 2016 |
999 | C | 5 | |a 10.1038/nchem.534 |9 -- missing cx lookup -- |1 W Huang |p 202 - |2 Crossref |u Huang, W. et al. A concentric planar doubly π-aromatic B19-cluster. Nat. Chem. 2, 202–206 (2010). |t Nat. Chem. |v 2 |y 2010 |
999 | C | 5 | |2 Crossref |u Tikhonov, D. S. MOLINC repository. https://gitlab.desy.de/denis.tikhonov/molinc (2020). |
999 | C | 5 | |a 10.1103/PhysRevB.37.785 |9 -- missing cx lookup -- |1 C Lee |p 785 - |2 Crossref |u Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988). |t Phys. Rev. B |v 37 |y 1988 |
999 | C | 5 | |a 10.1063/1.464304 |9 -- missing cx lookup -- |1 AD Becke |p 1372 - |2 Crossref |u Becke, A. D. A new mixing of Hartree-Fock and local density functional theories. J. Chem. Phys. 98, 1372–1377 (1993). |t J. Chem. Phys. |v 98 |y 1993 |
999 | C | 5 | |a 10.1063/1.456153 |9 -- missing cx lookup -- |1 TH Dunning |p 1007 - |2 Crossref |u Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989). |t J. Chem. Phys. |v 90 |y 1989 |
999 | C | 5 | |a 10.1002/wcms.1493 |9 -- missing cx lookup -- |1 C Bannwarth |p e1493 - |2 Crossref |u Bannwarth, C. et al. Extended tight-binding quantum chemistry methods. WIREs Comput. Mol. Sci. 11, e1493 (2021). |t WIREs Comput. Mol. Sci. |v 11 |y 2021 |
999 | C | 5 | |a 10.1002/wcms.81 |9 -- missing cx lookup -- |1 F Neese |p 73 - |2 Crossref |u Neese, F. The ORCA program system. Comput. Mol. Sci. 2, 73–78 (2012). |t Comput. Mol. Sci. |v 2 |y 2012 |
999 | C | 5 | |a 10.1002/jcc.25162 |9 -- missing cx lookup -- |1 JP Unsleber |p 788 - |2 Crossref |u Unsleber, J. P. et al. SERENITY: a subsystem quantum chemistry program. J. Comput. Chem. 39, 788–798 (2018). |t J. Comput. Chem. |v 39 |y 2018 |
999 | C | 5 | |a 10.5281/zenodo.4059510 |9 -- missing cx lookup -- |2 Crossref |u Barton, D. et al. qcserenity/serenity: Release 1.3.1. https://doi.org/10.5281/zenodo.4059510 (2020). |
999 | C | 5 | |2 Crossref |u Heine, T. et al. deMon-Nano http://demon-nano.ups-tlse.fr/ (2020). |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|