001     593053
005     20250715171130.0
024 7 _ |a 10.1038/s41467-024-48778-0
|2 doi
024 7 _ |a 10.3204/PUBDB-2023-05256
|2 datacite_doi
024 7 _ |a altmetric:164425329
|2 altmetric
024 7 _ |a pmid:38858352
|2 pmid
024 7 _ |a WOS:001244155400002
|2 WOS
024 7 _ |2 openalex
|a openalex:W4399497589
037 _ _ |a PUBDB-2023-05256
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Rosa Domingos, Sérgio Miguel
|0 P:(DE-H253)PIP1023833
|b 0
|e Corresponding author
245 _ _ |a Evolution of the ionisation energy with the stepwise growth of the chiral clusters of [4]helicene
260 _ _ |a [London]
|c 2024
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1733316223_885419
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We report on photoelectron-photoion coincidence (PEPICO) spectroscopy experiments on [4]helicene performed with a vacuum ultraviolet synchrotron beamline. Aggregates (up to the heptamer) of [4]helicene, the smallest polycyclic aromatic hydrocarbon with helical chirality, were produced and investigated with a combined experimental and theoretical approach using several state-of-the-art quantum-chemical methodologies. The ionisation onsets are extracted for each cluster size from the mass-selected photoelectron spectra and compared with calculations of vertical ionisation energies. We explore the complex aggregation topologies emerging from the multitude of isomers formed through clustering of P and M, the two enantiomers of [4]helicene.The very satisfactory benchmarking between experimental ionisation onsets vs. predicted ionisation energies allows the identification of theoretically predicted potential aggregation motifs and corresponding energetic ordering of chiral clusters. Our structural models suggest that a homochiral aggregation route is energetically favoured over heterochiral arrangements with increasing cluster size, hinting at potential symmetry breaking in PAH cluster formation at the scale of small grains.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)328961117 - SFB 1319: Extremes Licht zur Analyse und Kontrolle molekularer Chiralität (ELCH) (328961117)
|0 G:(GEPRIS)328961117
|c 328961117
|x 1
536 _ _ |a GRK 2678 - GRK 2678: Funktionelle pi-Systeme: Aktivierung, Wechselwirkungen und Anwendungen (pi-Sys) (437785492)
|0 G:(GEPRIS)437785492
|c 437785492
|x 2
542 _ _ |i 2024-06-10
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2024-06-10
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Tikhonov, Denis
|0 P:(DE-H253)PIP1084521
|b 1
|e Corresponding author
700 1 _ |a Steber, Amanda
|0 P:(DE-H253)PIP1023834
|b 2
|e Corresponding author
|u desy
700 1 _ |a Eschenbach, Patrick
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gruet, Sebastien Patrice
|0 P:(DE-H253)PIP1028010
|b 4
700 1 _ |a Hrodmarsson, Helgi R.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Martin, Kévin
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Garcia, Gustavo A.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Nahon, Laurent
|0 P:(DE-H253)PIP1086983
|b 8
700 1 _ |a Neugebauer, Johannes
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Avarvari, Narcis
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Schnell, Melanie
|0 P:(DE-H253)PIP1013514
|b 11
|e Corresponding author
773 1 8 |a 10.1038/s41467-024-48778-0
|b Springer Science and Business Media LLC
|d 2024-06-10
|n 1
|p 4928
|3 journal-article
|2 Crossref
|t Nature Communications
|v 15
|y 2024
|x 2041-1723
773 _ _ |a 10.1038/s41467-024-48778-0
|g Vol. 15, no. 1, p. 4928
|0 PERI:(DE-600)2553671-0
|n 1
|p 4928
|t Nature Communications
|v 15
|y 2024
|x 2041-1723
856 4 _ |u https://bib-pubdb1.desy.de/record/593053/files/Article%20Approval%20Service.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/593053/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/593053/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/593053/files/Article%20Approval%20Service.pdf?subformat=pdfa
856 4 _ |y Restricted
|u https://bib-pubdb1.desy.de/record/593053/files/Non_published_version.pdf
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/593053/files/Published%20Version_Evolution.pdf
856 4 _ |y Restricted
|x pdfa
|u https://bib-pubdb1.desy.de/record/593053/files/Non_published_version.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/593053/files/Published%20Version_Evolution.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:593053
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1023833
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1023833
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1084521
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1023834
910 1 _ |a Centre for Free-Electron Laser Science
|0 I:(DE-H253)_CFEL-20120731
|k CFEL
|b 2
|6 P:(DE-H253)PIP1023834
910 1 _ |a Max-Planck-Gesellschaft zur Förderung der Wissenschaften
|0 I:(DE-588b)2019024-4
|k MPG
|b 2
|6 P:(DE-H253)PIP1023834
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1028010
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1086983
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 11
|6 P:(DE-H253)PIP1013514
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
914 1 _ |y 2024
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 1 _ |0 I:(DE-H253)FS-SMP-20171124
|k FS-SMP
|l Spectroscopy of molecular processes
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-SMP-20171124
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts
999 C 5 |a 10.1002/cber.19030360481
|9 -- missing cx lookup --
|1 J Meisenheimer
|p 4153 -
|2 Crossref
|u Meisenheimer, J. & Witte, K. Reduction von 2-Nitronaphtalin. Ber. der. Dtsch. Chemischen. Ges. 36, 4153–4164 (1903).
|t Ber. der. Dtsch. Chemischen. Ges
|v 36
|y 1903
999 C 5 |a 10.1021/cr200087r
|9 -- missing cx lookup --
|1 Y Shen
|p 1463 -
|2 Crossref
|u Shen, Y. & Chen, C.-F. Helicenes: synthesis and applications. Chem. Rev. 112, 1463–1535 (2012).
|t Chem. Rev.
|v 112
|y 2012
999 C 5 |a 10.1021/acs.chemrev.8b00770
|9 -- missing cx lookup --
|1 F Pop
|p 8435 -
|2 Crossref
|u Pop, F., Zigon, N. & Avarvari, N. Main-group-based electro- and photoactive chiral materials. Chem. Rev. 119, 8435–8478 (2019).
|t Chem. Rev.
|v 119
|y 2019
999 C 5 |a 10.1021/acs.chemrev.0c01017
|9 -- missing cx lookup --
|1 T Mori
|p 2373 -
|2 Crossref
|u Mori, T. Chiroptical properties of symmetric double, triple, and multiple helicenes. Chem. Rev. 121, 2373–2412 (2021).
|t Chem. Rev.
|v 121
|y 2021
999 C 5 |a 10.1021/acsearthspacechem.0c00235
|9 -- missing cx lookup --
|1 JO Ona-Ruales
|p 381 -
|2 Crossref
|u Ona-Ruales, J. O., Ruiz-Morales, Y. & Alvarez-Ramírez, F. The helicenes: potential carriers of diffuse interstellar bands. ACS Earth Space Chem. 5, 381–390 (2021).
|t ACS Earth Space Chem.
|v 5
|y 2021
999 C 5 |a 10.1051/eas/1146024
|9 -- missing cx lookup --
|2 Crossref
|u Rapacioli, M. et al. PAH-related Very Small Grains in Photodissociation Regions: Implications from Molecular Simulations. 223–234. (EDP Sciences, Les Ulis, 2011).
999 C 5 |a 10.1146/annurev.astro.46.060407.145211
|9 -- missing cx lookup --
|1 A Tielens
|p 289 -
|2 Crossref
|u Tielens, A. Interstellar polycyclic aromatic hydrocarbon molecules. Annu. Rev. Astron. Astrophys. 46, 289–337 (2008).
|t Annu. Rev. Astron. Astrophys.
|v 46
|y 2008
999 C 5 |a 10.1051/0004-6361/201116602
|9 -- missing cx lookup --
|1 R Gredel
|p A26 -
|2 Crossref
|u Gredel, R. et al. Abundances of PAHs in the ISM: confronting observations with experimental results. Astron. Astrophys. 530, A26 (2011).
|t Astron. Astrophys.
|v 530
|y 2011
999 C 5 |a 10.1051/0004-6361/202140590
|9 -- missing cx lookup --
|1 K Lange
|p A21 -
|2 Crossref
|u Lange, K., Dominik, C. & Tielens, A. G. G. M. Stability of polycyclic aromatic hydrocarbon clusters in protoplanetary discs. Astron. Astrophys. 653, A21 (2021).
|t Astron. Astrophys.
|v 653
|y 2021
999 C 5 |a 10.1051/0004-6361/201935085
|9 -- missing cx lookup --
|1 S Foschino
|p A84 -
|2 Crossref
|u Foschino, S., Berné, O. & Joblin, C. Learning mid-IR emission spectra of polycyclic aromatic hydrocarbon populations from observations. Astron. Astrophys. 632, A84 (2019).
|t Astron. Astrophys.
|v 632
|y 2019
999 C 5 |a 10.1051/0004-6361/202141156
|9 -- missing cx lookup --
|1 J Cernicharo
|p L15 -
|2 Crossref
|u Cernicharo, J. et al. Pure hydrocarbon cycles in TMC-1: discovery of ethynyl cyclopropenylidene, cyclopentadiene, and indene. Astron. Astrophys. 649, L15 (2021).
|t Astron. Astrophys.
|v 649
|y 2021
999 C 5 |a 10.1038/nature14566
|9 -- missing cx lookup --
|1 E Campbell
|p 322 -
|2 Crossref
|u Campbell, E., Holz, M., Gerlich, D. & Maier, J. Laboratory confirmation of C60+ as the carrier of two diffuse interstellar bands. Nature 523, 322–323 (2015).
|t Nature
|v 523
|y 2015
999 C 5 |a 10.1126/science.1192035
|9 -- missing cx lookup --
|1 J Cami
|p 1180 -
|2 Crossref
|u Cami, J., Bernard-Salas, J., Peeters, E. & E. Malek, S. Detection of C60 and C70 in a young planetary nebula. Science 329, 1180–1182 (2010).
|t Science
|v 329
|y 2010
999 C 5 |a 10.1126/science.abb7535
|9 -- missing cx lookup --
|1 BA McGuire
|p 1265 -
|2 Crossref
|u McGuire, B. A. et al. Detection of two interstellar polycyclic aromatic hydrocarbons via spectral matched filtering. Science 371, 1265–1269 (2021).
|t Science
|v 371
|y 2021
999 C 5 |a 10.3847/2041-8213/ac92f4
|9 -- missing cx lookup --
|1 ML Sita
|p L12 -
|2 Crossref
|u Sita, M. L. et al. Discovery of interstellar 2-cyanoindene (2-C9H7CN) in GOTHAM observations of TMC-1. Astrophys. J. Lett. 938, L12 (2022).
|t Astrophys. J. Lett.
|v 938
|y 2022
999 C 5 |a 10.1021/ja0426239
|9 -- missing cx lookup --
|1 FJ Lovas
|p 4345 -
|2 Crossref
|u Lovas, F. J. et al. Interstellar chemistry: a strategy for detecting polycyclic aromatic hydrocarbons in space. J. Am. Chem. Soc. 127, 4345–4349 (2005).
|t J. Am. Chem. Soc.
|v 127
|y 2005
999 C 5 |a 10.1086/518026
|9 -- missing cx lookup --
|1 S Thorwirth
|p 1309 -
|2 Crossref
|u Thorwirth, S., Theulé, P., Gottlieb, C. A., McCarthy, M. C. & Thaddeus, P. Rotational spectra of small PAHs: acenaphthene, acenaphthylene, azulene, and fluorene. Astrophys. J. 662, 1309 (2007).
|t Astrophys. J.
|v 662
|y 2007
999 C 5 |a 10.1126/science.aao4890
|9 -- missing cx lookup --
|1 BA McGuire
|p 202 -
|2 Crossref
|u McGuire, B. A. et al. Detection of the aromatic molecule benzonitrile (c-C6H5CN) in the interstellar medium. Science 359, 202–205 (2018).
|t Science
|v 359
|y 2018
999 C 5 |a 10.1039/D0CP03523H
|9 -- missing cx lookup --
|1 P Stahl
|p 21474 -
|2 Crossref
|u Stahl, P. et al. Laboratory blueprints for interstellar searches of aromatic chiral molecules: rotational signatures of styrene oxide. Phys. Chem. Chem. Phys. 22, 21474–21487 (2020).
|t Phys. Chem. Chem. Phys.
|v 22
|y 2020
999 C 5 |a 10.1051/0004-6361/202243171
|9 -- missing cx lookup --
|1 O Berné
|p A159 -
|2 Crossref
|u Berné, O., Foschino, S., Jalabert, F. & Joblin, C. Contribution of polycyclic aromatic hydrocarbon ionization to neutral gas heating in galaxies: model versus observations. Astron. Astrophys. 667, A159 (2022).
|t Astron. Astrophys.
|v 667
|y 2022
999 C 5 |a 10.1051/0004-6361:20065412
|9 -- missing cx lookup --
|1 M Rapacioli
|p 519 -
|2 Crossref
|u Rapacioli, M. et al. Formation and destruction of polycyclic aromatic hydrocarbon clusters in the interstellar medium. Astron. Astrophys. 460, 519–531 (2006).
|t Astron. Astrophys.
|v 460
|y 2006
999 C 5 |a 10.1021/acs.jpclett.7b01546
|9 -- missing cx lookup --
|1 C Joblin
|p 3697 -
|2 Crossref
|u Joblin, C. et al. Size effect in the ionization energy of PAH clusters. J. Phys. Chem. Lett. 8, 3697–3702 (2017).
|t J. Phys. Chem. Lett.
|v 8
|y 2017
999 C 5 |a 10.1017/S1743921308021960
|9 -- missing cx lookup --
|1 F Salama
|p 357 -
|2 Crossref
|u Salama, F. PAHs in astronomy—a review. Proc. Int. Astron. Union 4, 357–366 (2008).
|t Proc. Int. Astron. Union
|v 4
|y 2008
999 C 5 |a 10.1016/j.molap.2017.01.001
|9 -- missing cx lookup --
|1 A Potapov
|p 16 -
|2 Crossref
|u Potapov, A. Weakly bound molecular complexes in the laboratory and in the interstellar medium: a lost interest? Mol. Astrophys. 6, 16–21 (2017).
|t Mol. Astrophys.
|v 6
|y 2017
999 C 5 |a 10.1063/1.478522
|9 -- missing cx lookup --
|1 C Adamo
|p 6158 -
|2 Crossref
|u Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).
|t J. Chem. Phys.
|v 110
|y 1999
999 C 5 |a 10.1039/b508541a
|9 -- missing cx lookup --
|1 F Weigend
|p 3297 -
|2 Crossref
|u Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).
|t Phys. Chem. Chem. Phys.
|v 7
|y 2005
999 C 5 |a 10.1039/D2CP05679H
|9 -- missing cx lookup --
|1 GA Garcia
|p 4501 -
|2 Crossref
|u Garcia, G. A. et al. Electronic effects in the dissociative ionisation of pyrene clusters. Phys. Chem. Chem. Phys. 25, 4501–4510 (2023).
|t Phys. Chem. Chem. Phys.
|v 25
|y 2023
999 C 5 |a 10.1021/acs.jctc.9b01107
|9 -- missing cx lookup --
|1 J Zhang
|p 3947 -
|2 Crossref
|u Zhang, J., Glezakou, V.-A., Rousseau, R. & Nguyen, M.-T. NWPEsSe: an adaptive-learning global optimization algorithm for nanosized cluster systems. J. Chem. Theory Comput. 16, 3947–3958 (2020).
|t J. Chem. Theory Comput.
|v 16
|y 2020
999 C 5 |2 Crossref
|u Averkiev, B. B. Coalescence-Kick, https://github.com/averkiev75/Coalescence-Kick, (2013).
999 C 5 |a 10.1021/acs.jctc.8b01176
|9 -- missing cx lookup --
|1 C Bannwarth
|p 1652 -
|2 Crossref
|u Bannwarth, C., Ehlert, S. & Grimme, S. GFN2-xTB-an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 15, 1652–1671 (2019).
|t J. Chem. Theory Comput.
|v 15
|y 2019
999 C 5 |a 10.1002/anie.201812556
|9 -- missing cx lookup --
|1 M Fatima
|p 3108 -
|2 Crossref
|u Fatima, M. et al. Rotational signatures of dispersive stacking in the formation of aromatic dimers. Angew. Chem. Int. Ed. 58, 3108–3113 (2019).
|t Angew. Chem. Int. Ed.
|v 58
|y 2019
999 C 5 |a 10.1063/1.4773581
|9 -- missing cx lookup --
|1 C Riplinger
|p 034106 -
|2 Crossref
|u Riplinger, C. & Neese, F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 138, 034106 (2013).
|t J. Chem. Phys.
|v 138
|y 2013
999 C 5 |a 10.1063/1.4821834
|9 -- missing cx lookup --
|1 C Riplinger
|p 134101 -
|2 Crossref
|u Riplinger, C., Sandhoefer, B., Hansen, A. & Neese, F. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 139, 134101 (2013).
|t J. Chem. Phys.
|v 139
|y 2013
999 C 5 |a 10.1063/1.5011798
|9 -- missing cx lookup --
|2 Crossref
|u Guo, Y. et al. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)]. J. Chem. Phys. 148, 011101 (2018).
999 C 5 |a 10.1016/0009-2614(87)80218-X
|9 -- missing cx lookup --
|1 S Pal
|p 273 -
|2 Crossref
|u Pal, S., Rittby, M., Bartlett, R. J., Sinha, D. & Mukherjee, D. Multireference coupled-cluster methods using an incomplete model space: application to ionization potentials and excitation energies of formaldehyde. Chem. Phys. Lett. 137, 273–278 (1987).
|t Chem. Phys. Lett.
|v 137
|y 1987
999 C 5 |a 10.1063/1.468022
|9 -- missing cx lookup --
|1 JF Stanton
|p 8938 -
|2 Crossref
|u Stanton, J. F. & Gauss, J. Analytic energy derivatives for ionized states described by the equation of motion coupled cluster method. J. Chem. Phys. 101, 8938–8944 (1994).
|t J. Chem. Phys.
|v 101
|y 1994
999 C 5 |a 10.1146/annurev.physchem.59.032607.093602
|9 -- missing cx lookup --
|1 AI Krylov
|p 433 -
|2 Crossref
|u Krylov, A. I. Equation-of-motion coupled-cluster methods for open-shell and electronically excited species: the Hitchhiker’s guide to fock space. Ann. Rev. Phys. Chem. 59, 433–462 (2008).
|t Ann. Rev. Phys. Chem.
|v 59
|y 2008
999 C 5 |a 10.1063/1.3666005
|9 -- missing cx lookup --
|1 M Pavanello
|p 234103 -
|2 Crossref
|u Pavanello, M. & Neugebauer, J. Modelling charge transfer reactions with the frozen density embedding formalism. J. Chem. Phys. 135, 234103 (2011).
|t J. Chem. Phys.
|v 135
|y 2011
999 C 5 |a 10.1063/1.4789418
|9 -- missing cx lookup --
|1 M Pavanello
|p 054101 -
|2 Crossref
|u Pavanello, M., Voorhis, T. V., Visscher, L. & Neugebauer, J. An accurate and linear-scaling method for calculating charge-transfer excitation energies and diabatic couplings. J. Chem. Phys. 138, 054101 (2013).
|t J. Chem. Phys.
|v 138
|y 2013
999 C 5 |a 10.1063/1.4871301
|9 -- missing cx lookup --
|1 A Solovyeva
|p 164103 -
|2 Crossref
|u Solovyeva, A., Pavanello, M. & Neugebauer, J. Describing long-range charge-separation processes with subsystem density-functional theory. J. Chem. Phys. 140, 164103 (2014).
|t J. Chem. Phys.
|v 140
|y 2014
999 C 5 |a 10.1021/jp511275e
|9 -- missing cx lookup --
|1 P Ramos
|p 7541 -
|2 Crossref
|u Ramos, P., Papadakis, M. & Pavanello, M. Performance of frozen density embedding for modeling hole transfer reactions. J. Phys. Chem. B 119, 7541–7557 (2015).
|t J. Phys. Chem. B
|v 119
|y 2015
999 C 5 |a 10.1021/acs.jctc.0c01307
|9 -- missing cx lookup --
|1 J Tölle
|p 2186 -
|2 Crossref
|u Tölle, J., Deilmann, T., Rohlfing, M. & Neugebauer, J. Subsystem-based GW/Bethe-Salpeter equation. J. Chem. Theory Comput. 17, 2186–2199 (2021).
|t J. Chem. Theory Comput.
|v 17
|y 2021
999 C 5 |a 10.1039/C5CP06344B
|9 -- missing cx lookup --
|1 L Dontot
|p 3545 -
|2 Crossref
|u Dontot, L., Suaud, N., Rapacioli, M. & Spiegelman, F. An extended DFTB-CI model for charge-transfer excited states in cationic molecular clusters: model studies versus ab initio calculations in small PAH clusters. Phys. Chem. Chem. Phys. 18, 3545–3557 (2016).
|t Phys. Chem. Chem. Phys.
|v 18
|y 2016
999 C 5 |a 10.1016/j.plrev.2011.08.005
|9 -- missing cx lookup --
|1 C Meinert
|p 307 -
|2 Crossref
|u Meinert, C. et al. Photochirogenesis: Photochemical models on the absolute asymmetric formation of amino acids in interstellar space. Phys. Life Rev. 8, 307–330 (2011).
|t Phys. Life Rev.
|v 8
|y 2011
999 C 5 |a 10.1101/cshperspect.a002147
|9 -- missing cx lookup --
|1 DG Blackmond
|p a002147 -
|2 Crossref
|u Blackmond, D. G. The origin of biological homochirality. Cold Spring Harb. Perspect. Biol. 2, a002147 (2010).
|t Cold Spring Harb. Perspect. Biol.
|v 2
|y 2010
999 C 5 |a 10.1107/S0909049512010588
|9 -- missing cx lookup --
|1 L Nahon
|p 508 -
|2 Crossref
|u Nahon, L. et al. DESIRS: a state-of-the-art VUV beamline featuring high resolution and variable polarization for spectroscopy and dichroism at SOLEIL. J. Synchrotron Rad. 619, 508–520 (2012).
|t J. Synchrotron Rad.
|v 619
|y 2012
999 C 5 |a 10.1063/1.4807751
|9 -- missing cx lookup --
|1 GA Garcia
|p 053112 -
|2 Crossref
|u Garcia, G. A., Cunha de Miranda, B. K., Tia, M., Daly, S. & Nahon, L. DELICIOUS III: a multipurpose double imaging particle coincidence spectrometer for gas phase vacuum ultraviolet photodynamics studies. Rev. Sci. Instrum. 84, 053112 (2013).
|t Rev. Sci. Instrum.
|v 84
|y 2013
999 C 5 |a 10.1063/1.4937624
|9 -- missing cx lookup --
|1 X Tang
|p 123108 -
|2 Crossref
|u Tang, X., Garcia, G. A., Gil, J.-F. & Nahon, L. Vacuum upgrade and enhanced performances of the double imaging electron/ion coincidence end-station at the vacuum ultraviolet beamline DESIRS. Rev. Sci. Instrum. 86, 123108 (2015).
|t Rev. Sci. Instrum.
|v 86
|y 2015
999 C 5 |a 10.1002/wcms.1546
|9 -- missing cx lookup --
|1 S Gozem
|p e1546 -
|2 Crossref
|u Gozem, S. & Krylov, A. I. The ezSpectra suite: An easy-to-use toolkit for spectroscopy modeling. WIREs Comput. Mol. Sci. 12, e1546 (2022).
|t WIREs Comput. Mol. Sci.
|v 12
|y 2022
999 C 5 |a 10.1039/C5CP04060D
|9 -- missing cx lookup --
|1 J Zhang
|p 24173 -
|2 Crossref
|u Zhang, J. & Dolg, M. ABCluster: the artificial bee colony algorithm for cluster global optimization. Phys. Chem. Chem. Phys. 17, 24173–24181 (2015).
|t Phys. Chem. Chem. Phys.
|v 17
|y 2015
999 C 5 |a 10.1039/C5CP06313B
|9 -- missing cx lookup --
|1 J Zhang
|p 3003 -
|2 Crossref
|u Zhang, J. & Dolg, M. Global optimization of clusters of rigid molecules using the artificial bee colony algorithm. Phys. Chem. Chem. Phys. 18, 3003–3010 (2016).
|t Phys. Chem. Chem. Phys.
|v 18
|y 2016
999 C 5 |a 10.1038/nchem.534
|9 -- missing cx lookup --
|1 W Huang
|p 202 -
|2 Crossref
|u Huang, W. et al. A concentric planar doubly π-aromatic B19-cluster. Nat. Chem. 2, 202–206 (2010).
|t Nat. Chem.
|v 2
|y 2010
999 C 5 |2 Crossref
|u Tikhonov, D. S. MOLINC repository. https://gitlab.desy.de/denis.tikhonov/molinc (2020).
999 C 5 |a 10.1103/PhysRevB.37.785
|9 -- missing cx lookup --
|1 C Lee
|p 785 -
|2 Crossref
|u Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).
|t Phys. Rev. B
|v 37
|y 1988
999 C 5 |a 10.1063/1.464304
|9 -- missing cx lookup --
|1 AD Becke
|p 1372 -
|2 Crossref
|u Becke, A. D. A new mixing of Hartree-Fock and local density functional theories. J. Chem. Phys. 98, 1372–1377 (1993).
|t J. Chem. Phys.
|v 98
|y 1993
999 C 5 |a 10.1063/1.456153
|9 -- missing cx lookup --
|1 TH Dunning
|p 1007 -
|2 Crossref
|u Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989).
|t J. Chem. Phys.
|v 90
|y 1989
999 C 5 |a 10.1002/wcms.1493
|9 -- missing cx lookup --
|1 C Bannwarth
|p e1493 -
|2 Crossref
|u Bannwarth, C. et al. Extended tight-binding quantum chemistry methods. WIREs Comput. Mol. Sci. 11, e1493 (2021).
|t WIREs Comput. Mol. Sci.
|v 11
|y 2021
999 C 5 |a 10.1002/wcms.81
|9 -- missing cx lookup --
|1 F Neese
|p 73 -
|2 Crossref
|u Neese, F. The ORCA program system. Comput. Mol. Sci. 2, 73–78 (2012).
|t Comput. Mol. Sci.
|v 2
|y 2012
999 C 5 |a 10.1002/jcc.25162
|9 -- missing cx lookup --
|1 JP Unsleber
|p 788 -
|2 Crossref
|u Unsleber, J. P. et al. SERENITY: a subsystem quantum chemistry program. J. Comput. Chem. 39, 788–798 (2018).
|t J. Comput. Chem.
|v 39
|y 2018
999 C 5 |a 10.5281/zenodo.4059510
|9 -- missing cx lookup --
|2 Crossref
|u Barton, D. et al. qcserenity/serenity: Release 1.3.1. https://doi.org/10.5281/zenodo.4059510 (2020).
999 C 5 |2 Crossref
|u Heine, T. et al. deMon-Nano http://demon-nano.ups-tlse.fr/ (2020).


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21