000593053 001__ 593053
000593053 005__ 20250715171130.0
000593053 0247_ $$2doi$$a10.1038/s41467-024-48778-0
000593053 0247_ $$2datacite_doi$$a10.3204/PUBDB-2023-05256
000593053 0247_ $$2altmetric$$aaltmetric:164425329
000593053 0247_ $$2pmid$$apmid:38858352
000593053 0247_ $$2WOS$$aWOS:001244155400002
000593053 0247_ $$2openalex$$aopenalex:W4399497589
000593053 037__ $$aPUBDB-2023-05256
000593053 041__ $$aEnglish
000593053 082__ $$a500
000593053 1001_ $$0P:(DE-H253)PIP1023833$$aRosa Domingos, Sérgio Miguel$$b0$$eCorresponding author
000593053 245__ $$aEvolution of the ionisation energy with the stepwise growth of the chiral clusters of [4]helicene
000593053 260__ $$a[London]$$bNature Publishing Group UK$$c2024
000593053 3367_ $$2DRIVER$$aarticle
000593053 3367_ $$2DataCite$$aOutput Types/Journal article
000593053 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1733316223_885419
000593053 3367_ $$2BibTeX$$aARTICLE
000593053 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000593053 3367_ $$00$$2EndNote$$aJournal Article
000593053 520__ $$aWe report on photoelectron-photoion coincidence (PEPICO) spectroscopy experiments on [4]helicene performed with a vacuum ultraviolet synchrotron beamline. Aggregates (up to the heptamer) of [4]helicene, the smallest polycyclic aromatic hydrocarbon with helical chirality, were produced and investigated with a combined experimental and theoretical approach using several state-of-the-art quantum-chemical methodologies. The ionisation onsets are extracted for each cluster size from the mass-selected photoelectron spectra and compared with calculations of vertical ionisation energies. We explore the complex aggregation topologies emerging from the multitude of isomers formed through clustering of P and M, the two enantiomers of [4]helicene.The very satisfactory benchmarking between experimental ionisation onsets vs. predicted ionisation energies allows the identification of theoretically predicted potential aggregation motifs and corresponding energetic ordering of chiral clusters. Our structural models suggest that a homochiral aggregation route is energetically favoured over heterochiral arrangements with increasing cluster size, hinting at potential symmetry breaking in PAH cluster formation at the scale of small grains.
000593053 536__ $$0G:(DE-HGF)POF4-631$$a631 - Matter – Dynamics, Mechanisms and Control (POF4-631)$$cPOF4-631$$fPOF IV$$x0
000593053 536__ $$0G:(GEPRIS)328961117$$aDFG project G:(GEPRIS)328961117 - SFB 1319: Extremes Licht zur Analyse und Kontrolle molekularer Chiralität (ELCH) (328961117)$$c328961117$$x1
000593053 536__ $$0G:(GEPRIS)437785492$$aGRK 2678 - GRK 2678: Funktionelle pi-Systeme: Aktivierung, Wechselwirkungen und Anwendungen (pi-Sys) (437785492)$$c437785492$$x2
000593053 542__ $$2Crossref$$i2024-06-10$$uhttps://creativecommons.org/licenses/by/4.0
000593053 542__ $$2Crossref$$i2024-06-10$$uhttps://creativecommons.org/licenses/by/4.0
000593053 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000593053 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000593053 7001_ $$0P:(DE-H253)PIP1084521$$aTikhonov, Denis$$b1$$eCorresponding author
000593053 7001_ $$0P:(DE-H253)PIP1023834$$aSteber, Amanda$$b2$$eCorresponding author$$udesy
000593053 7001_ $$0P:(DE-HGF)0$$aEschenbach, Patrick$$b3
000593053 7001_ $$0P:(DE-H253)PIP1028010$$aGruet, Sebastien Patrice$$b4
000593053 7001_ $$0P:(DE-HGF)0$$aHrodmarsson, Helgi R.$$b5
000593053 7001_ $$0P:(DE-HGF)0$$aMartin, Kévin$$b6
000593053 7001_ $$0P:(DE-HGF)0$$aGarcia, Gustavo A.$$b7
000593053 7001_ $$0P:(DE-H253)PIP1086983$$aNahon, Laurent$$b8
000593053 7001_ $$0P:(DE-HGF)0$$aNeugebauer, Johannes$$b9
000593053 7001_ $$0P:(DE-HGF)0$$aAvarvari, Narcis$$b10
000593053 7001_ $$0P:(DE-H253)PIP1013514$$aSchnell, Melanie$$b11$$eCorresponding author
000593053 77318 $$2Crossref$$3journal-article$$a10.1038/s41467-024-48778-0$$bSpringer Science and Business Media LLC$$d2024-06-10$$n1$$p4928$$tNature Communications$$v15$$x2041-1723$$y2024
000593053 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-024-48778-0$$gVol. 15, no. 1, p. 4928$$n1$$p4928$$tNature Communications$$v15$$x2041-1723$$y2024
000593053 8564_ $$uhttps://bib-pubdb1.desy.de/record/593053/files/Article%20Approval%20Service.pdf
000593053 8564_ $$uhttps://bib-pubdb1.desy.de/record/593053/files/HTML-Approval_of_scientific_publication.html
000593053 8564_ $$uhttps://bib-pubdb1.desy.de/record/593053/files/PDF-Approval_of_scientific_publication.pdf
000593053 8564_ $$uhttps://bib-pubdb1.desy.de/record/593053/files/Article%20Approval%20Service.pdf?subformat=pdfa$$xpdfa
000593053 8564_ $$uhttps://bib-pubdb1.desy.de/record/593053/files/Non_published_version.pdf$$yRestricted
000593053 8564_ $$uhttps://bib-pubdb1.desy.de/record/593053/files/Published%20Version_Evolution.pdf$$yOpenAccess
000593053 8564_ $$uhttps://bib-pubdb1.desy.de/record/593053/files/Non_published_version.pdf?subformat=pdfa$$xpdfa$$yRestricted
000593053 8564_ $$uhttps://bib-pubdb1.desy.de/record/593053/files/Published%20Version_Evolution.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000593053 8767_ $$8SN-2024-00558-b$$92024-06-04$$d2024-06-04$$eAPC$$jDEAL$$lSpringerNature$$v47.71$$zEinzelnachweis Rechnung SN-2024-00558-b
000593053 8767_ $$92024$$d2024-06-04$$ePayment fee$$jDEAL$$lSpringerNature$$v0.35$$zMPDL Gebühr
000593053 8767_ $$8SN-2024-00558-b$$92024-06-04$$d2024-06-04$$eAPC$$jStorniert$$lSpringerNature$$zDFG OAPK (Projekt)
000593053 8767_ $$8SN-2024-00558-b$$92024-06-04$$d2024-06-04$$eAPC$$jZahlung erfolgt$$lSpringerNature$$zDFG OAPK (Projekt)
000593053 8767_ $$8SN-2024-01904-b$$92025$$d2025-07-15$$eAPC$$jStorniert$$lSpringerNature$$v-30.13$$zKorrketur MwSt -> 7%
000593053 909CO $$ooai:bib-pubdb1.desy.de:593053$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000593053 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1023833$$aExternal Institute$$b0$$kExtern
000593053 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1023833$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000593053 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1084521$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000593053 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1023834$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000593053 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1023834$$aCentre for Free-Electron Laser Science$$b2$$kCFEL
000593053 9101_ $$0I:(DE-588b)2019024-4$$6P:(DE-H253)PIP1023834$$aMax-Planck-Gesellschaft zur Förderung der Wissenschaften$$b2$$kMPG
000593053 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1028010$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000593053 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1086983$$aExternal Institute$$b8$$kExtern
000593053 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1013514$$aDeutsches Elektronen-Synchrotron$$b11$$kDESY
000593053 9131_ $$0G:(DE-HGF)POF4-631$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMatter – Dynamics, Mechanisms and Control$$x0
000593053 9141_ $$y2024
000593053 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-29
000593053 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
000593053 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-29
000593053 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000593053 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-29
000593053 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000593053 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
000593053 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2022$$d2025-01-02
000593053 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000593053 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000593053 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-01-30T07:48:07Z
000593053 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-01-30T07:48:07Z
000593053 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2024-01-30T07:48:07Z
000593053 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000593053 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2025-01-02
000593053 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2025-01-02
000593053 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
000593053 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
000593053 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
000593053 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000593053 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2022$$d2025-01-02
000593053 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000593053 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000593053 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000593053 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000593053 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000593053 9201_ $$0I:(DE-H253)FS-SMP-20171124$$kFS-SMP$$lSpectroscopy of molecular processes$$x0
000593053 980__ $$ajournal
000593053 980__ $$aVDB
000593053 980__ $$aUNRESTRICTED
000593053 980__ $$aI:(DE-H253)FS-SMP-20171124
000593053 980__ $$aAPC
000593053 9801_ $$aAPC
000593053 9801_ $$aFullTexts
000593053 999C5 $$1J Meisenheimer$$2Crossref$$9-- missing cx lookup --$$a10.1002/cber.19030360481$$p4153 -$$tBer. der. Dtsch. Chemischen. Ges$$uMeisenheimer, J. & Witte, K. Reduction von 2-Nitronaphtalin. Ber. der. Dtsch. Chemischen. Ges. 36, 4153–4164 (1903).$$v36$$y1903
000593053 999C5 $$1Y Shen$$2Crossref$$9-- missing cx lookup --$$a10.1021/cr200087r$$p1463 -$$tChem. Rev.$$uShen, Y. & Chen, C.-F. Helicenes: synthesis and applications. Chem. Rev. 112, 1463–1535 (2012).$$v112$$y2012
000593053 999C5 $$1F Pop$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.chemrev.8b00770$$p8435 -$$tChem. Rev.$$uPop, F., Zigon, N. & Avarvari, N. Main-group-based electro- and photoactive chiral materials. Chem. Rev. 119, 8435–8478 (2019).$$v119$$y2019
000593053 999C5 $$1T Mori$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.chemrev.0c01017$$p2373 -$$tChem. Rev.$$uMori, T. Chiroptical properties of symmetric double, triple, and multiple helicenes. Chem. Rev. 121, 2373–2412 (2021).$$v121$$y2021
000593053 999C5 $$1JO Ona-Ruales$$2Crossref$$9-- missing cx lookup --$$a10.1021/acsearthspacechem.0c00235$$p381 -$$tACS Earth Space Chem.$$uOna-Ruales, J. O., Ruiz-Morales, Y. & Alvarez-Ramírez, F. The helicenes: potential carriers of diffuse interstellar bands. ACS Earth Space Chem. 5, 381–390 (2021).$$v5$$y2021
000593053 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1051/eas/1146024$$uRapacioli, M. et al. PAH-related Very Small Grains in Photodissociation Regions: Implications from Molecular Simulations. 223–234. (EDP Sciences, Les Ulis, 2011).
000593053 999C5 $$1A Tielens$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.astro.46.060407.145211$$p289 -$$tAnnu. Rev. Astron. Astrophys.$$uTielens, A. Interstellar polycyclic aromatic hydrocarbon molecules. Annu. Rev. Astron. Astrophys. 46, 289–337 (2008).$$v46$$y2008
000593053 999C5 $$1R Gredel$$2Crossref$$9-- missing cx lookup --$$a10.1051/0004-6361/201116602$$pA26 -$$tAstron. Astrophys.$$uGredel, R. et al. Abundances of PAHs in the ISM: confronting observations with experimental results. Astron. Astrophys. 530, A26 (2011).$$v530$$y2011
000593053 999C5 $$1K Lange$$2Crossref$$9-- missing cx lookup --$$a10.1051/0004-6361/202140590$$pA21 -$$tAstron. Astrophys.$$uLange, K., Dominik, C. & Tielens, A. G. G. M. Stability of polycyclic aromatic hydrocarbon clusters in protoplanetary discs. Astron. Astrophys. 653, A21 (2021).$$v653$$y2021
000593053 999C5 $$1S Foschino$$2Crossref$$9-- missing cx lookup --$$a10.1051/0004-6361/201935085$$pA84 -$$tAstron. Astrophys.$$uFoschino, S., Berné, O. & Joblin, C. Learning mid-IR emission spectra of polycyclic aromatic hydrocarbon populations from observations. Astron. Astrophys. 632, A84 (2019).$$v632$$y2019
000593053 999C5 $$1J Cernicharo$$2Crossref$$9-- missing cx lookup --$$a10.1051/0004-6361/202141156$$pL15 -$$tAstron. Astrophys.$$uCernicharo, J. et al. Pure hydrocarbon cycles in TMC-1: discovery of ethynyl cyclopropenylidene, cyclopentadiene, and indene. Astron. Astrophys. 649, L15 (2021).$$v649$$y2021
000593053 999C5 $$1E Campbell$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature14566$$p322 -$$tNature$$uCampbell, E., Holz, M., Gerlich, D. & Maier, J. Laboratory confirmation of C60+ as the carrier of two diffuse interstellar bands. Nature 523, 322–323 (2015).$$v523$$y2015
000593053 999C5 $$1J Cami$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1192035$$p1180 -$$tScience$$uCami, J., Bernard-Salas, J., Peeters, E. & E. Malek, S. Detection of C60 and C70 in a young planetary nebula. Science 329, 1180–1182 (2010).$$v329$$y2010
000593053 999C5 $$1BA McGuire$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.abb7535$$p1265 -$$tScience$$uMcGuire, B. A. et al. Detection of two interstellar polycyclic aromatic hydrocarbons via spectral matched filtering. Science 371, 1265–1269 (2021).$$v371$$y2021
000593053 999C5 $$1ML Sita$$2Crossref$$9-- missing cx lookup --$$a10.3847/2041-8213/ac92f4$$pL12 -$$tAstrophys. J. Lett.$$uSita, M. L. et al. Discovery of interstellar 2-cyanoindene (2-C9H7CN) in GOTHAM observations of TMC-1. Astrophys. J. Lett. 938, L12 (2022).$$v938$$y2022
000593053 999C5 $$1FJ Lovas$$2Crossref$$9-- missing cx lookup --$$a10.1021/ja0426239$$p4345 -$$tJ. Am. Chem. Soc.$$uLovas, F. J. et al. Interstellar chemistry: a strategy for detecting polycyclic aromatic hydrocarbons in space. J. Am. Chem. Soc. 127, 4345–4349 (2005).$$v127$$y2005
000593053 999C5 $$1S Thorwirth$$2Crossref$$9-- missing cx lookup --$$a10.1086/518026$$p1309 -$$tAstrophys. J.$$uThorwirth, S., Theulé, P., Gottlieb, C. A., McCarthy, M. C. & Thaddeus, P. Rotational spectra of small PAHs: acenaphthene, acenaphthylene, azulene, and fluorene. Astrophys. J. 662, 1309 (2007).$$v662$$y2007
000593053 999C5 $$1BA McGuire$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aao4890$$p202 -$$tScience$$uMcGuire, B. A. et al. Detection of the aromatic molecule benzonitrile (c-C6H5CN) in the interstellar medium. Science 359, 202–205 (2018).$$v359$$y2018
000593053 999C5 $$1P Stahl$$2Crossref$$9-- missing cx lookup --$$a10.1039/D0CP03523H$$p21474 -$$tPhys. Chem. Chem. Phys.$$uStahl, P. et al. Laboratory blueprints for interstellar searches of aromatic chiral molecules: rotational signatures of styrene oxide. Phys. Chem. Chem. Phys. 22, 21474–21487 (2020).$$v22$$y2020
000593053 999C5 $$1O Berné$$2Crossref$$9-- missing cx lookup --$$a10.1051/0004-6361/202243171$$pA159 -$$tAstron. Astrophys.$$uBerné, O., Foschino, S., Jalabert, F. & Joblin, C. Contribution of polycyclic aromatic hydrocarbon ionization to neutral gas heating in galaxies: model versus observations. Astron. Astrophys. 667, A159 (2022).$$v667$$y2022
000593053 999C5 $$1M Rapacioli$$2Crossref$$9-- missing cx lookup --$$a10.1051/0004-6361:20065412$$p519 -$$tAstron. Astrophys.$$uRapacioli, M. et al. Formation and destruction of polycyclic aromatic hydrocarbon clusters in the interstellar medium. Astron. Astrophys. 460, 519–531 (2006).$$v460$$y2006
000593053 999C5 $$1C Joblin$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpclett.7b01546$$p3697 -$$tJ. Phys. Chem. Lett.$$uJoblin, C. et al. Size effect in the ionization energy of PAH clusters. J. Phys. Chem. Lett. 8, 3697–3702 (2017).$$v8$$y2017
000593053 999C5 $$1F Salama$$2Crossref$$9-- missing cx lookup --$$a10.1017/S1743921308021960$$p357 -$$tProc. Int. Astron. Union$$uSalama, F. PAHs in astronomy—a review. Proc. Int. Astron. Union 4, 357–366 (2008).$$v4$$y2008
000593053 999C5 $$1A Potapov$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.molap.2017.01.001$$p16 -$$tMol. Astrophys.$$uPotapov, A. Weakly bound molecular complexes in the laboratory and in the interstellar medium: a lost interest? Mol. Astrophys. 6, 16–21 (2017).$$v6$$y2017
000593053 999C5 $$1C Adamo$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.478522$$p6158 -$$tJ. Chem. Phys.$$uAdamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).$$v110$$y1999
000593053 999C5 $$1F Weigend$$2Crossref$$9-- missing cx lookup --$$a10.1039/b508541a$$p3297 -$$tPhys. Chem. Chem. Phys.$$uWeigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).$$v7$$y2005
000593053 999C5 $$1GA Garcia$$2Crossref$$9-- missing cx lookup --$$a10.1039/D2CP05679H$$p4501 -$$tPhys. Chem. Chem. Phys.$$uGarcia, G. A. et al. Electronic effects in the dissociative ionisation of pyrene clusters. Phys. Chem. Chem. Phys. 25, 4501–4510 (2023).$$v25$$y2023
000593053 999C5 $$1J Zhang$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jctc.9b01107$$p3947 -$$tJ. Chem. Theory Comput.$$uZhang, J., Glezakou, V.-A., Rousseau, R. & Nguyen, M.-T. NWPEsSe: an adaptive-learning global optimization algorithm for nanosized cluster systems. J. Chem. Theory Comput. 16, 3947–3958 (2020).$$v16$$y2020
000593053 999C5 $$2Crossref$$uAverkiev, B. B. Coalescence-Kick, https://github.com/averkiev75/Coalescence-Kick, (2013).
000593053 999C5 $$1C Bannwarth$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jctc.8b01176$$p1652 -$$tJ. Chem. Theory Comput.$$uBannwarth, C., Ehlert, S. & Grimme, S. GFN2-xTB-an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 15, 1652–1671 (2019).$$v15$$y2019
000593053 999C5 $$1M Fatima$$2Crossref$$9-- missing cx lookup --$$a10.1002/anie.201812556$$p3108 -$$tAngew. Chem. Int. Ed.$$uFatima, M. et al. Rotational signatures of dispersive stacking in the formation of aromatic dimers. Angew. Chem. Int. Ed. 58, 3108–3113 (2019).$$v58$$y2019
000593053 999C5 $$1C Riplinger$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4773581$$p034106 -$$tJ. Chem. Phys.$$uRiplinger, C. & Neese, F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 138, 034106 (2013).$$v138$$y2013
000593053 999C5 $$1C Riplinger$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4821834$$p134101 -$$tJ. Chem. Phys.$$uRiplinger, C., Sandhoefer, B., Hansen, A. & Neese, F. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 139, 134101 (2013).$$v139$$y2013
000593053 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5011798$$uGuo, Y. et al. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)]. J. Chem. Phys. 148, 011101 (2018).
000593053 999C5 $$1S Pal$$2Crossref$$9-- missing cx lookup --$$a10.1016/0009-2614(87)80218-X$$p273 -$$tChem. Phys. Lett.$$uPal, S., Rittby, M., Bartlett, R. J., Sinha, D. & Mukherjee, D. Multireference coupled-cluster methods using an incomplete model space: application to ionization potentials and excitation energies of formaldehyde. Chem. Phys. Lett. 137, 273–278 (1987).$$v137$$y1987
000593053 999C5 $$1JF Stanton$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.468022$$p8938 -$$tJ. Chem. Phys.$$uStanton, J. F. & Gauss, J. Analytic energy derivatives for ionized states described by the equation of motion coupled cluster method. J. Chem. Phys. 101, 8938–8944 (1994).$$v101$$y1994
000593053 999C5 $$1AI Krylov$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.physchem.59.032607.093602$$p433 -$$tAnn. Rev. Phys. Chem.$$uKrylov, A. I. Equation-of-motion coupled-cluster methods for open-shell and electronically excited species: the Hitchhiker’s guide to fock space. Ann. Rev. Phys. Chem. 59, 433–462 (2008).$$v59$$y2008
000593053 999C5 $$1M Pavanello$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3666005$$p234103 -$$tJ. Chem. Phys.$$uPavanello, M. & Neugebauer, J. Modelling charge transfer reactions with the frozen density embedding formalism. J. Chem. Phys. 135, 234103 (2011).$$v135$$y2011
000593053 999C5 $$1M Pavanello$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4789418$$p054101 -$$tJ. Chem. Phys.$$uPavanello, M., Voorhis, T. V., Visscher, L. & Neugebauer, J. An accurate and linear-scaling method for calculating charge-transfer excitation energies and diabatic couplings. J. Chem. Phys. 138, 054101 (2013).$$v138$$y2013
000593053 999C5 $$1A Solovyeva$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4871301$$p164103 -$$tJ. Chem. Phys.$$uSolovyeva, A., Pavanello, M. & Neugebauer, J. Describing long-range charge-separation processes with subsystem density-functional theory. J. Chem. Phys. 140, 164103 (2014).$$v140$$y2014
000593053 999C5 $$1P Ramos$$2Crossref$$9-- missing cx lookup --$$a10.1021/jp511275e$$p7541 -$$tJ. Phys. Chem. B$$uRamos, P., Papadakis, M. & Pavanello, M. Performance of frozen density embedding for modeling hole transfer reactions. J. Phys. Chem. B 119, 7541–7557 (2015).$$v119$$y2015
000593053 999C5 $$1J Tölle$$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jctc.0c01307$$p2186 -$$tJ. Chem. Theory Comput.$$uTölle, J., Deilmann, T., Rohlfing, M. & Neugebauer, J. Subsystem-based GW/Bethe-Salpeter equation. J. Chem. Theory Comput. 17, 2186–2199 (2021).$$v17$$y2021
000593053 999C5 $$1L Dontot$$2Crossref$$9-- missing cx lookup --$$a10.1039/C5CP06344B$$p3545 -$$tPhys. Chem. Chem. Phys.$$uDontot, L., Suaud, N., Rapacioli, M. & Spiegelman, F. An extended DFTB-CI model for charge-transfer excited states in cationic molecular clusters: model studies versus ab initio calculations in small PAH clusters. Phys. Chem. Chem. Phys. 18, 3545–3557 (2016).$$v18$$y2016
000593053 999C5 $$1C Meinert$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.plrev.2011.08.005$$p307 -$$tPhys. Life Rev.$$uMeinert, C. et al. Photochirogenesis: Photochemical models on the absolute asymmetric formation of amino acids in interstellar space. Phys. Life Rev. 8, 307–330 (2011).$$v8$$y2011
000593053 999C5 $$1DG Blackmond$$2Crossref$$9-- missing cx lookup --$$a10.1101/cshperspect.a002147$$pa002147 -$$tCold Spring Harb. Perspect. Biol.$$uBlackmond, D. G. The origin of biological homochirality. Cold Spring Harb. Perspect. Biol. 2, a002147 (2010).$$v2$$y2010
000593053 999C5 $$1L Nahon$$2Crossref$$9-- missing cx lookup --$$a10.1107/S0909049512010588$$p508 -$$tJ. Synchrotron Rad.$$uNahon, L. et al. DESIRS: a state-of-the-art VUV beamline featuring high resolution and variable polarization for spectroscopy and dichroism at SOLEIL. J. Synchrotron Rad. 619, 508–520 (2012).$$v619$$y2012
000593053 999C5 $$1GA Garcia$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4807751$$p053112 -$$tRev. Sci. Instrum.$$uGarcia, G. A., Cunha de Miranda, B. K., Tia, M., Daly, S. & Nahon, L. DELICIOUS III: a multipurpose double imaging particle coincidence spectrometer for gas phase vacuum ultraviolet photodynamics studies. Rev. Sci. Instrum. 84, 053112 (2013).$$v84$$y2013
000593053 999C5 $$1X Tang$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4937624$$p123108 -$$tRev. Sci. Instrum.$$uTang, X., Garcia, G. A., Gil, J.-F. & Nahon, L. Vacuum upgrade and enhanced performances of the double imaging electron/ion coincidence end-station at the vacuum ultraviolet beamline DESIRS. Rev. Sci. Instrum. 86, 123108 (2015).$$v86$$y2015
000593053 999C5 $$1S Gozem$$2Crossref$$9-- missing cx lookup --$$a10.1002/wcms.1546$$pe1546 -$$tWIREs Comput. Mol. Sci.$$uGozem, S. & Krylov, A. I. The ezSpectra suite: An easy-to-use toolkit for spectroscopy modeling. WIREs Comput. Mol. Sci. 12, e1546 (2022).$$v12$$y2022
000593053 999C5 $$1J Zhang$$2Crossref$$9-- missing cx lookup --$$a10.1039/C5CP04060D$$p24173 -$$tPhys. Chem. Chem. Phys.$$uZhang, J. & Dolg, M. ABCluster: the artificial bee colony algorithm for cluster global optimization. Phys. Chem. Chem. Phys. 17, 24173–24181 (2015).$$v17$$y2015
000593053 999C5 $$1J Zhang$$2Crossref$$9-- missing cx lookup --$$a10.1039/C5CP06313B$$p3003 -$$tPhys. Chem. Chem. Phys.$$uZhang, J. & Dolg, M. Global optimization of clusters of rigid molecules using the artificial bee colony algorithm. Phys. Chem. Chem. Phys. 18, 3003–3010 (2016).$$v18$$y2016
000593053 999C5 $$1W Huang$$2Crossref$$9-- missing cx lookup --$$a10.1038/nchem.534$$p202 -$$tNat. Chem.$$uHuang, W. et al. A concentric planar doubly π-aromatic B19-cluster. Nat. Chem. 2, 202–206 (2010).$$v2$$y2010
000593053 999C5 $$2Crossref$$uTikhonov, D. S. MOLINC repository. https://gitlab.desy.de/denis.tikhonov/molinc (2020).
000593053 999C5 $$1C Lee$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.37.785$$p785 -$$tPhys. Rev. B$$uLee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).$$v37$$y1988
000593053 999C5 $$1AD Becke$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.464304$$p1372 -$$tJ. Chem. Phys.$$uBecke, A. D. A new mixing of Hartree-Fock and local density functional theories. J. Chem. Phys. 98, 1372–1377 (1993).$$v98$$y1993
000593053 999C5 $$1TH Dunning$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.456153$$p1007 -$$tJ. Chem. Phys.$$uDunning, T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989).$$v90$$y1989
000593053 999C5 $$1C Bannwarth$$2Crossref$$9-- missing cx lookup --$$a10.1002/wcms.1493$$pe1493 -$$tWIREs Comput. Mol. Sci.$$uBannwarth, C. et al. Extended tight-binding quantum chemistry methods. WIREs Comput. Mol. Sci. 11, e1493 (2021).$$v11$$y2021
000593053 999C5 $$1F Neese$$2Crossref$$9-- missing cx lookup --$$a10.1002/wcms.81$$p73 -$$tComput. Mol. Sci.$$uNeese, F. The ORCA program system. Comput. Mol. Sci. 2, 73–78 (2012).$$v2$$y2012
000593053 999C5 $$1JP Unsleber$$2Crossref$$9-- missing cx lookup --$$a10.1002/jcc.25162$$p788 -$$tJ. Comput. Chem.$$uUnsleber, J. P. et al. SERENITY: a subsystem quantum chemistry program. J. Comput. Chem. 39, 788–798 (2018).$$v39$$y2018
000593053 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.5281/zenodo.4059510$$uBarton, D. et al. qcserenity/serenity: Release 1.3.1. https://doi.org/10.5281/zenodo.4059510 (2020).
000593053 999C5 $$2Crossref$$uHeine, T. et al. deMon-Nano http://demon-nano.ups-tlse.fr/ (2020).