000587905 001__ 587905
000587905 005__ 20250715173214.0
000587905 0247_ $$2doi$$a10.1016/j.epsl.2023.118296
000587905 0247_ $$2ISSN$$a0012-821X
000587905 0247_ $$2ISSN$$a1385-013X
000587905 0247_ $$2datacite_doi$$a10.3204/PUBDB-2023-04601
000587905 0247_ $$2WOS$$aWOS:001046198100001
000587905 0247_ $$2altmetric$$aaltmetric:151577450
000587905 0247_ $$2openalex$$aopenalex:W4384162657
000587905 037__ $$aPUBDB-2023-04601
000587905 041__ $$aEnglish
000587905 082__ $$a550
000587905 1001_ $$0P:(DE-H253)PIP1096354$$aTrautner, Viktoria$$b0$$eCorresponding author
000587905 245__ $$aCompressibility of ferropericlase at high-temperature: Evidence for the iron spin crossover in seismic tomography
000587905 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2023
000587905 3367_ $$2DRIVER$$aarticle
000587905 3367_ $$2DataCite$$aOutput Types/Journal article
000587905 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1690887408_3322355
000587905 3367_ $$2BibTeX$$aARTICLE
000587905 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000587905 3367_ $$00$$2EndNote$$aJournal Article
000587905 500__ $$aCreative Commons licence Attribution 4.0 International (CC BY 4.0)
000587905 520__ $$aThe iron spin crossover in ferropericlase, the second most abundant mineral in Earth's lower mantle, causes changes in a range of physical properties, including seismic wave velocities. Understanding the effect of temperature on the spin crossover is essential to detect its signature in seismic observations and constrain its occurrence in the mantle. Here, we report the first experimental results on the spin crossover-induced bulk modulus softening at high temperatures, derived directly from time-resolved x-ray diffraction measurements during continuous compression of (Mg$_{0.8}$Fe$_{0.2}$)O in a resistive-heated dynamic diamond-anvil cell. We present new theoretical calculations of the spin crossover at mantle temperatures benchmarked by the experiments. Based on our results, we create synthetic seismic tomography models to investigate the signature of the spin crossover in global seismic tomography. A tomographic filter is applied to allow for meaningful comparisons between the synthetic models and data-based seismic tomography models, like SP12RTS. A negative anomaly in the correlation between Vs variations and Vc variations (S-C correlation) is found to be the most suitable measure to detect the presence of the spin crossover in tomographic models. When including the effects of the spin crossover, the misfit between the synthetic model and SP12RTS is reduced by 63%, providing strong evidence for the presence of the spin crossover, and hence ferropericlase, in the lower mantle. Future improvement of seismic resolution may facilitate a detailed mapping of spin state using the S-C correlation, providing constraints on mantle temperatures by taking advantage of the temperature sensitivity of the spin crossover.
000587905 536__ $$0G:(DE-HGF)POF4-631$$a631 - Matter – Dynamics, Mechanisms and Control (POF4-631)$$cPOF4-631$$fPOF IV$$x0
000587905 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000587905 536__ $$0G:(EU-Grant)864877$$aDEEP-MAPS - Deep Earth Mantle Phase Transition Maps: Studied by Time-Resolved Experiments (864877)$$c864877$$fERC-2019-COG$$x2
000587905 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000587905 693__ $$0EXP:(DE-H253)P-P02.2-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P02.2-20150101$$aPETRA III$$fPETRA Beamline P02.2$$x0
000587905 7001_ $$0P:(DE-H253)PIP1096352$$aStackhouse, Stephen$$b1
000587905 7001_ $$00000-0002-3743-6428$$aTurner, Alice R.$$b2
000587905 7001_ $$00000-0001-5153-3040$$aKoelemeijer, Paula$$b3
000587905 7001_ $$0P:(DE-H253)PIP1098247$$aDavies, D. Rhodri$$b4
000587905 7001_ $$0P:(DE-H253)PIP1080469$$aMéndez, Alba San José$$b5
000587905 7001_ $$0P:(DE-H253)PIP1085012$$aSatta, Niccolo$$b6
000587905 7001_ $$0P:(DE-H253)PIP1011548$$aKurnosov, Alexander$$b7
000587905 7001_ $$0P:(DE-H253)PIP1007496$$aLiermann, Hanns-Peter$$b8
000587905 7001_ $$0P:(DE-H253)PIP1014167$$aMarquardt, Hauke$$b9
000587905 773__ $$0PERI:(DE-600)1466659-5$$a10.1016/j.epsl.2023.118296$$gVol. 618, p. 118296 -$$p118296 -$$tEarth and planetary science letters$$v618$$x0012-821X$$y2023
000587905 8564_ $$uhttps://doi.org/10.1016/j.epsl.2023.118296
000587905 8564_ $$uhttps://bib-pubdb1.desy.de/record/587905/files/Trautner_EPSL_2023.pdf$$yOpenAccess
000587905 8564_ $$uhttps://bib-pubdb1.desy.de/record/587905/files/Trautner_EPSL_2023_SI.docx$$yRestricted
000587905 8564_ $$uhttps://bib-pubdb1.desy.de/record/587905/files/Trautner_EPSL_2023.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000587905 909CO $$ooai:bib-pubdb1.desy.de:587905$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000587905 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1096354$$aExternal Institute$$b0$$kExtern
000587905 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1096352$$aExternal Institute$$b1$$kExtern
000587905 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1098247$$aExternal Institute$$b4$$kExtern
000587905 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1080469$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000587905 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1085012$$aExternal Institute$$b6$$kExtern
000587905 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1011548$$aExternal Institute$$b7$$kExtern
000587905 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1007496$$aDeutsches Elektronen-Synchrotron$$b8$$kDESY
000587905 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1007496$$aEuropean XFEL$$b8$$kXFEL.EU
000587905 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1014167$$aExternal Institute$$b9$$kExtern
000587905 9131_ $$0G:(DE-HGF)POF4-631$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMatter – Dynamics, Mechanisms and Control$$x0
000587905 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000587905 9141_ $$y2023
000587905 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-05
000587905 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000587905 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-05
000587905 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000587905 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-29$$wger
000587905 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEARTH PLANET SC LETT : 2022$$d2023-08-29
000587905 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-29
000587905 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-29
000587905 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-29
000587905 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-29
000587905 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-29
000587905 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-29
000587905 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-08-29
000587905 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-29
000587905 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bEARTH PLANET SC LETT : 2022$$d2023-08-29
000587905 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000587905 9201_ $$0I:(DE-H253)FS-PET-D-20190712$$kFS-PET-D$$lExperimentebetreuung PETRA III$$x1
000587905 980__ $$ajournal
000587905 980__ $$aVDB
000587905 980__ $$aUNRESTRICTED
000587905 980__ $$aI:(DE-H253)HAS-User-20120731
000587905 980__ $$aI:(DE-H253)FS-PET-D-20190712
000587905 9801_ $$aFullTexts