001     587504
005     20250715173457.0
024 7 _ |a 10.1038/s41598-023-38059-z
|2 doi
024 7 _ |a 10.3204/PUBDB-2023-04342
|2 datacite_doi
024 7 _ |a 37422480
|2 pmid
024 7 _ |a WOS:001026178300017
|2 WOS
024 7 _ |2 openalex
|a openalex:W4383621551
037 _ _ |a PUBDB-2023-04342
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Timmermann, Sonja
|0 P:(DE-H253)PIP1090670
|b 0
|e Corresponding author
245 _ _ |a X-ray driven and intrinsic dynamics in protein gels
260 _ _ |a [London]
|c 2023
|b Macmillan Publishers Limited, part of Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1690364133_340330
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We use X-ray photon correlation spectroscopy to investigate how structure and dynamics of egg white protein gels are affected by X-ray dose and dose rate. We find that both, changes in structure and beam-induced dynamics, depend on the viscoelastic properties of the gels with soft gels prepared at low temperatures being more sensitive to beam-induced effects. Soft gels can be fluidized by X-ray doses of a few kGy with a crossover from stress relaxation dynamics (Kohlrausch-Williams-Watts exponents $k \approx 1.5-2$) to typical dynamical heterogeneous behavior ($k<$1) while the high temperature egg white gels are radiation-stable up to doses of 15 kGy with $k\geq 1.5 $. For all gel samples we observe a crossover from equilibrium dynamics to beam induced motion upon increasing X-ray fluence and determine the resulting fluence threshold values $\Phi_D$. Surprisingly small threshold values of $\Phi_D=(3 \pm 2)\times10^{-3} \:\mathrm{ph\:s^{-1}\:nm^{-2}} $ can drive the dynamics in the soft gels while for stronger gels this threshold is increased to $\Phi_D=(0.9 \pm 0.3) \:\mathrm{ph\:s^{-1}\:nm^{-2}}$. We explain our observations with the viscoelastic properties of the materials and can connect the threshold dose for structural beam damage with the dynamic properties of beam-induced motion. Our results suggest that soft viscoelastic materials can display pronounced X-ray driven motion even for low X-ray fluences. This induced motion is not detectable by static scattering as it appears at dose values well below the static damage threshold. We show that intrinsic sample dynamics can be separated from X-ray driven motion by measuring the fluence dependence of the dynamical properties.
536 _ _ |a 633 - Life Sciences – Building Blocks of Life: Structure and Function (POF4-633)
|0 G:(DE-HGF)POF4-633
|c POF4-633
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a FS-Proposal: II-20210008 (II-20210008)
|0 G:(DE-H253)II-20210008
|c II-20210008
|x 2
536 _ _ |a FS-Proposal: I-20211600 (I-20211600)
|0 G:(DE-H253)I-20211600
|c I-20211600
|x 3
536 _ _ |a FS-Proposal: I-20210097 (I-20210097)
|0 G:(DE-H253)I-20210097
|c I-20210097
|x 4
536 _ _ |a 05K19PS1 - Instrumentierung, um die Dynamik von biologischen Proben mit Korrelationsspektroskopie zu messen. (BMBF-05K19PS1)
|0 G:(DE-Ds200)BMBF-05K19PS1
|c BMBF-05K19PS1
|f 05K19PS1
|x 5
536 _ _ |a 05K20PSA - Verbundprojekt 05K2020 - 2019-06075 Protein-Dyn: Dynamik von Proteinen in Lösungen auf multiplen Längen und Zeitskalen (Teilprojekt 1) (BMBF-05K20PSA)
|0 G:(DE-Ds200)BMBF-05K20PSA
|c BMBF-05K20PSA
|f 05K20PSA
|x 6
536 _ _ |a 05K22PS1 - Schnelle Korrelationsspektroskopie an der ESRF-EBS (BMBF-05K22PS1)
|0 G:(DE-Ds200)BMBF-05K22PS1
|c BMBF-05K22PS1
|f 05K22PS1
|x 7
536 _ _ |a DFG project 390677874 - EXC 2033: RESOLV (Ruhr Explores Solvation) (390677874)
|0 G:(GEPRIS)390677874
|c 390677874
|x 8
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P10
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P10-20150101
|6 EXP:(DE-H253)P-P10-20150101
|x 0
700 1 _ |a Anthuparambil, Nimmi Das
|0 P:(DE-H253)PIP1025670
|b 1
|u desy
700 1 _ |a Girelli, Anita
|0 P:(DE-H253)PIP1084324
|b 2
700 1 _ |a Begam, Nafisa
|0 P:(DE-H253)PIP1020126
|b 3
700 1 _ |a Kowalski, Marvin
|0 P:(DE-H253)PIP1092461
|b 4
700 1 _ |a Retzbach, Sebastian
|0 P:(DE-H253)PIP1098076
|b 5
700 1 _ |a Senft, Maximilian Darius
|0 P:(DE-H253)PIP1096805
|b 6
700 1 _ |a Akhundzadeh, Mohammad Sayed
|0 P:(DE-H253)PIP1091138
|b 7
700 1 _ |a Poggemann, Hanna-Friederike
|0 P:(DE-H253)PIP1094452
|b 8
700 1 _ |a Moron, Marc
|0 P:(DE-H253)PIP1087470
|b 9
700 1 _ |a Hiremath, Anusha
|0 P:(DE-H253)PIP1101319
|b 10
700 1 _ |a Gutmüller, Dennis
|0 P:(DE-H253)PIP1098073
|b 11
700 1 _ |a Dargasz, Michelle
|0 P:(DE-H253)PIP1102188
|b 12
700 1 _ |a Öztuerk, Özguel
|0 P:(DE-H253)PIP1092734
|b 13
700 1 _ |a Paulus, Michael
|0 P:(DE-H253)PIP1007931
|b 14
700 1 _ |a Westermeier, Fabian
|0 P:(DE-H253)PIP1006002
|b 15
|u desy
700 1 _ |a Sprung, Michael
|0 P:(DE-H253)PIP1007141
|b 16
|u desy
700 1 _ |a Ragulskaya, Anastasia
|0 P:(DE-H253)PIP1081201
|b 17
700 1 _ |a Zhang, Fajun
|0 P:(DE-H253)PIP1008442
|b 18
700 1 _ |a Schreiber, Frank
|0 P:(DE-H253)PIP1008437
|b 19
700 1 _ |a Gutt, Christian
|0 P:(DE-H253)PIP1005337
|b 20
|e Corresponding author
773 _ _ |a 10.1038/s41598-023-38059-z
|g Vol. 13, no. 1, p. 11048
|0 PERI:(DE-600)2615211-3
|n 1
|p 11048
|t Scientific reports
|v 13
|y 2023
|x 2045-2322
856 4 _ |u www.nature.com/articles/s41598-023-38059-z
856 4 _ |u https://bib-pubdb1.desy.de/record/587504/files/Supporting_Information.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/587504/files/s41598-023-38059-z.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/587504/files/Supporting_Information.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/587504/files/s41598-023-38059-z.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:587504
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 0
|6 P:(DE-H253)PIP1090670
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1090670
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1025670
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1025670
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 2
|6 P:(DE-H253)PIP1084324
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1084324
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1020126
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1092461
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1098076
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 6
|6 P:(DE-H253)PIP1096805
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1096805
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 7
|6 P:(DE-H253)PIP1091138
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1091138
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 8
|6 P:(DE-H253)PIP1094452
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1094452
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1087470
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-H253)PIP1101319
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-H253)PIP1098073
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 P:(DE-H253)PIP1102188
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 12
|6 P:(DE-H253)PIP1102188
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 13
|6 P:(DE-H253)PIP1092734
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 13
|6 P:(DE-H253)PIP1092734
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 14
|6 P:(DE-H253)PIP1007931
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 15
|6 P:(DE-H253)PIP1006002
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 15
|6 P:(DE-H253)PIP1006002
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 16
|6 P:(DE-H253)PIP1007141
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 16
|6 P:(DE-H253)PIP1007141
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 17
|6 P:(DE-H253)PIP1081201
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 17
|6 P:(DE-H253)PIP1081201
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 18
|6 P:(DE-H253)PIP1008442
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 19
|6 P:(DE-H253)PIP1008437
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 20
|6 P:(DE-H253)PIP1005337
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 20
|6 P:(DE-H253)PIP1005337
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-633
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Life Sciences – Building Blocks of Life: Structure and Function
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-03-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-03-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-03-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-03-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2022
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T15:11:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T15:11:06Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T15:11:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-24
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-24
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PET-S-20190712
|k FS-PET-S
|l Experimentebetreuung PETRA III
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PET-S-20190712
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21