%0 Journal Article
%A Aharonian, F.
%A Ait Benkhali, F.
%A Arcaro, C.
%A Aschersleben, J.
%A Backes, M.
%A Barbosa Martins, V.
%A Batzofin, R.
%A Becherini, Y.
%A Berge, D.
%A Bernlöhr, K.
%A Bi, B.
%A Böttcher, M.
%A Boisson, C.
%A Bolmont, J.
%A Borowska, J.
%A Bradascio, F.
%A Breuhaus, M.
%A Brose, R.
%A Brun, F.
%A Bruno, B.
%A Bulik, T.
%A Burger-Scheidlin, C.
%A Bylund, T.
%A Caroff, S.
%A Casanova, S.
%A Cecil, R.
%A Celic, J.
%A Cerruti, M.
%A Chand, T.
%A Chandra, S.
%A Chen, A.
%A Chibueze, J.
%A Chibueze, O.
%A Cotter, G.
%A Damascene Mbarubucyeye, J.
%A Djannati-Ataï, A.
%A Egberts, K.
%A Ernenwein, J.-P.
%A Fichet de Clairfontaine, G.
%A Filipovic, M.
%A Fontaine, G.
%A Füßling, M.
%A Funk, S.
%A Gabici, S.
%A Ghafourizadeh, S.
%A Giavitto, G.
%A Glawion, D.
%A Glicenstein, J. F.
%A Goswami, P.
%A Grolleron, G.
%A Grondin, M.-H.
%A Haerer, L.
%A Haupt, M.
%A Hermann, G.
%A Hinton, J. A.
%A Holch, T. L.
%A Horns, D.
%A Jamrozy, M.
%A Jankowsky, F.
%A Joshi, V.
%A Jung-Richardt, I.
%A Kasai, E.
%A Katarzyński, K.
%A Khatoon, R.
%A Khélifi, B.
%A Kluźniak, W.
%A Komin, Nu.
%A Kosack, K.
%A Kostunin, D.
%A Lang, R. G.
%A Le Stum, S.
%A Leitl, F.
%A Lemière, A.
%A Lemoine-Goumard, M.
%A Lenain, J.-P.
%A Leuschner, F.
%A Lohse, T.
%A Luashvili, A.
%A Lypova, I.
%A Mackey, J.
%A Malyshev, D.
%A Malyshev, D.
%A Marandon, V.
%A Marchegiani, P.
%A Marcowith, A.
%A Marinos, P.
%A Martí-Devesa, G.
%A Marx, R.
%A Meyer, M.
%A Mitchell, A.
%A Moderski, R.
%A Mohrmann, L.
%A Montanari, A.
%A Moulin, E.
%A Muller, J.
%A Nakashima, K.
%A de Naurois, M.
%A Niemiec, J.
%A Priyana Noel, A.
%A O’Brien, P.
%A Ohm, S.
%A Olivera-Nieto, L.
%A de Ona Wilhelmi, E.
%A Panny, S.
%A Panter, M.
%A Parsons, R. D.
%A Peron, G.
%A Pita, S.
%A Prokhorov, D. A.
%A Prokoph, H.
%A Pühlhofer, G.
%A Punch, M.
%A Quirrenbach, A.
%A Reichherzer, P.
%A Reimer, A.
%A Reimer, O.
%A Renaud, M.
%A Rieger, F.
%A Rowell, G.
%A Rudak, B.
%A Ruiz-Velasco, E.
%A Sahakian, V.
%A Salzmann, H.
%A Sanchez, D. A.
%A Santangelo, A.
%A Sasaki, M.
%A Schäfer, J.
%A Schüssler, F.
%A Schwanke, U.
%A Shapopi, J. N. S.
%A Sol, H.
%A Specovius, A.
%A Spencer, S.
%A Stawarz, Ł.
%A Steenkamp, R.
%A Steinmassl, S.
%A Steppa, C.
%A Sushch, I.
%A Suzuki, H.
%A Takahashi, T.
%A Tanaka, T.
%A Taylor, A. M.
%A Terrier, R.
%A Tsirou, M.
%A Tsuji, N.
%A Uchiyama, Y.
%A van Eldik, C.
%A van Soelen, B.
%A Vecchi, M.
%A Veh, J.
%A Venter, C.
%A Vink, J.
%A Wach, T.
%A Wagner, S. J.
%A White, R.
%A Wierzcholska, A.
%A Wong, Y. W.
%A Zacharias, M.
%A Zargaryan, D.
%A Zdziarski, A. A.
%A Zech, A.
%A Zouari, S.
%A Żywucka, N.
%T Constraining the cosmic-ray pressure in the inner Virgo Cluster using H.E.S.S. observations of M 87
%J Astronomy and astrophysics
%V 675
%N arXiv:2305.09607
%@ 0004-6361
%C Les Ulis
%I EDP Sciences
%M PUBDB-2023-04110
%M arXiv:2305.09607
%P A138 
%D 2023
%Z A&A 675, A138 (2023). 15 pages, 7 figures. Accepted for publication in A&A. Corresponding authors: Victor Barbosa Martins, Stefan Ohm, Cornelia Arcaro, Natalia Żywucka, Mathieu de Naurois
%X The origin of the gamma-ray emission from M87 is currently a matter of debate. This work aims to localize the VHE (100 GeV-100 TeV) gamma-ray emission from M87 and probe a potential extended hadronic emission component in the inner Virgo Cluster. The search for a steady and extended gamma-ray signal around M87 can constrain the cosmic-ray energy density and the pressure exerted by the cosmic rays onto the intra-cluster medium, and allow us to investigate the role of the cosmic rays in the active galactic nucleus feedback as a heating mechanism in the Virgo Cluster. H.E.S.S. telescopes are sensitive to VHE gamma rays and have been utilized to observe M87 since 2004. We utilized a Bayesian block analysis to identify M87 emission states with H.E.S.S. observations from 2004 until 2021, dividing them into low, intermediate, and high states. Because of the causality argument, an extended ( >~kpc) signal is allowed only in steady emission states. Hence, we fitted the morphology of the 120h low state data and found no significant gamma-ray extension. Therefore, we derived for the low state an upper limit of 58'(corresponding to  ≈ 4.6kpc) in the extension of a single-component morphological model described by a rotationally symmetric 2D Gaussian model at 99.7
%K gamma ray: emission (INSPIRE)
%K gamma ray: VHE (INSPIRE)
%K p: cosmic radiation (INSPIRE)
%K cosmic radiation: energy (INSPIRE)
%K cosmic radiation: pressure (INSPIRE)
%K energy: density (INSPIRE)
%K VIRGO (INSPIRE)
%K cluster (INSPIRE)
%K radio wave (INSPIRE)
%K gamma ray: energy spectrum (INSPIRE)
%K HESS (INSPIRE)
%K AGN (INSPIRE)
%K power spectrum (INSPIRE)
%K causality (INSPIRE)
%K feedback (INSPIRE)
%K thermal (INSPIRE)
%K Bayesian (INSPIRE)
%K rotation (INSPIRE)
%K TeV (INSPIRE)
%F PUB:(DE-HGF)16
%9 Journal Article
%U <Go to ISI:>//WOS:001033560900005
%R 10.1051/0004-6361/202346056
%U https://bib-pubdb1.desy.de/record/587042