% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@ARTICLE{Aharonian:586756,
author = {Aharonian, F. and Aschersleben, J. and Backes, M. and
Barbosa Martins, V. and Batzofin, R. and Becherini, Y. and
Berge, D. and Bi, B. and Bouyahiaoui, M. and Breuhaus, M.
and Brose, R. and Brun, F. and Bruno, B. and Bulik, T. and
Burger-Scheidlin, C. and Bylund, T. and Caroff, S. and
Casanova, S. and Celic, J. and Cerruti, M. and Chand, T. and
Chandra, S. and Chen, A. and Chibueze, J. and Chibueze, O.
and Cotter, G. and de Bony, M. and Egberts, K. and
Ernenwein, J.-P. and Fichet de Clairfontaine, G. and
Filipovic, M. and Fontaine, G. and Füssling, M. and Funk,
S. and Gabici, S. and Ghafourizadeh, S. and Giavitto, G. and
Glawion, D. and Glicenstein, J. F. and Goswami, P. and
Grondin, M.-H. and Haerer, L. and Holch, Tim Lukas and
Holler, M. and Horns, D. and Jamrozy, M. and Jankowsky, F.
and Joshi, V. and Jung-Richardt, I. and Kasai, E. and
Katarzyński, K. and Khatoon, R. and Khélifi, B. and
Kluźniak, W. and Komin, Nu. and Kosack, K. and Kostunin, D.
and Lang, R. G. and Le Stum, S. and Leitl, F. and Lemière,
A. and Lenain, J.-P. and Leuschner, F. and Lohse, T. and
Luashvili, A. and Lypova, I. and Mackey, J. and Malyshev, D.
and Malyshev, D. and Marandon, V. and Marchegiani, P. and
Marcowith, A. and Martí-Devesa, G. and Marx, R. and Meyer,
M. and Mitchell, A. and Moderski, R. and Mohrmann, L. and
Montanari, A. and Moulin, E. and Muller, J. and Murach, T.
and Nakashima, K. and Niemiec, J. and Ohm, S. and
Olivera-Nieto, L. and de Ona Wilhelmi, E. and Panny, S. and
Panter, M. and Parsons, R. D. and Peron, G. and Prokhorov,
D. A. and Prokoph, H. and Pühlhofer, G. and Punch, M. and
Quirrenbach, A. and Reichherzer, P. and Reimer, A. and
Reimer, O. and Reville, B. and Rieger, F. and Rowell, G. and
Rudak, B. and Ruiz-Velasco, E. and Sahakian, V. and Sanchez,
D. A. and Sasaki, M. and Schüssler, F. and Schutte, H. M.
and Schwanke, U. and Shapopi, J. N. S. and Sol, H. and
Spencer, S. and Steinmassl, S. and Suzuki, H. and Takahashi,
T. and Tanaka, T. and Taylor, A. M. and Terrier, R. and
Thorpe-Morgan, C. and Tsirou, M. and Tsuji, N. and Uchiyama,
Y. and van Eldik, C. and Veh, J. and Venter, C. and Wagner,
S. J. and White, R. and Wierzcholska, A. and Wong, Yu Wun
and Zacharias, M. and Zargaryan, D. and Zdziarski, A. A. and
Zouari, S. and Żywucka, N.},
collaboration = {H. E. S. S. Collaboration and Fermi-LAT Collaboration and
S, H. E. S.},
title = {{C}onstraints on the {I}ntergalactic {M}agnetic {F}ield
{U}sing {F}ermi-{LAT} and {H}.{E}.{S}.{S}. {B}lazar
{O}bservations},
journal = {The astrophysical journal / 2},
volume = {950},
number = {2},
issn = {2041-8205},
address = {London},
publisher = {Institute of Physics Publ.},
reportid = {PUBDB-2023-03994, arXiv:2306.05132},
pages = {L16},
year = {2023},
note = {ApJ Letters 2023, Volume 950, Number 2 950, L16. 20 pages,
7 figures, 4 tables. Accepted for publication in ApJ
Letters. Auxiliary data is provided in electronic format at
https://zenodo.org/record/8014311},
abstract = {Magnetic fields in galaxies and galaxy clusters are
believed to be the result of the amplification of
intergalactic seed fields during the formation of
large-scale structures in the universe. However, the origin,
strength, and morphology of this intergalactic magnetic
field (IGMF) remain unknown. Lower limits on (or indirect
detection of) the IGMF can be obtained from observations of
high-energy gamma rays from distant blazars. Gamma rays
interact with the extragalactic background light to produce
electron−positron pairs, which can subsequently initiate
electromagnetic cascades. The gamma-ray signature of the
cascade depends on the IGMF since it deflects the pairs.
Here we report on a new search for this cascade emission
using a combined data set from the Fermi Large Area
Telescope and the High Energy Stereoscopic System. Using
state-of-the-art Monte Carlo predictions for the cascade
signal, our results place a lower limit on the IGMF of B >
7.1 × 10$^{−16}$ G for a coherence length of 1 Mpc even
when blazar duty cycles as short as 10 yr are assumed. This
improves on previous lower limits by a factor of 2. For
longer duty cycles of 10$^{4}$ (10$^{7}$) yr, IGMF strengths
below 1.8 × 10$^{−14}$ G (3.9 × 10$^{−14}$ G) are
excluded, which rules out specific models for IGMF
generation in the early universe.},
cin = {ZEU-HESS},
ddc = {520},
cid = {I:(DE-H253)ZEU-HESS-20140213},
pnm = {613 - Matter and Radiation from the Universe (POF4-613)},
pid = {G:(DE-HGF)POF4-613},
experiment = {EXP:(DE-H253)HESS-20170101 / EXP:(DE-H253)Fermi-20170101},
typ = {PUB:(DE-HGF)16},
eprint = {2306.05132},
howpublished = {arXiv:2306.05132},
archivePrefix = {arXiv},
SLACcitation = {$\%\%CITATION$ = $arXiv:2306.05132;\%\%$},
UT = {WOS:001021638900001},
doi = {10.3847/2041-8213/acd777},
url = {https://bib-pubdb1.desy.de/record/586756},
}