000586714 001__ 586714
000586714 005__ 20250724131901.0
000586714 0247_ $$2doi$$a10.1063/5.0155182
000586714 0247_ $$2ISSN$$a0021-9606
000586714 0247_ $$2ISSN$$a1520-9032
000586714 0247_ $$2ISSN$$a1089-7690
000586714 0247_ $$2datacite_doi$$a10.3204/PUBDB-2023-03973
000586714 0247_ $$2altmetric$$aaltmetric:152230195
000586714 0247_ $$2pmid$$a37338030
000586714 0247_ $$2WOS$$aWOS:001015338700004
000586714 0247_ $$2openalex$$aopenalex:W4381308761
000586714 037__ $$aPUBDB-2023-03973
000586714 041__ $$aEnglish
000586714 082__ $$a530
000586714 1001_ $$0P:(DE-H253)PIP1096040$$aStemer, Dominik$$b0$$eCorresponding author
000586714 245__ $$aPhotoelectron spectroscopy from a liquid flatjet
000586714 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2023
000586714 3367_ $$2DRIVER$$aarticle
000586714 3367_ $$2DataCite$$aOutput Types/Journal article
000586714 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1705500480_1047646
000586714 3367_ $$2BibTeX$$aARTICLE
000586714 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000586714 3367_ $$00$$2EndNote$$aJournal Article
000586714 500__ $$aOpen Access
000586714 520__ $$aWe demonstrate liquid-jet photoelectron spectroscopy from a flatjet formed by the impingement of two micron-sized cylindrical jets of different aqueous solutions. Flatjets provide flexible experimental templates enabling unique liquid-phase experiments that would not be possible using single cylindrical liquid jets. One such possibility is to generate two co-flowing liquid-jet sheets with a common interface in vacuum, with each surface facing the vacuum being representative of one of the solutions, allowing face-sensitive detection by photoelectron spectroscopy. The impingement of two cylindrical jets also enables the application of different bias potentials to each jet with the principal possibility to generate a potential gradient between the two solution phases. This is shown for the case of a flatjet composed of a sodium iodide aqueous solution and neat liquid water. The implications of asymmetric biasing for flatjet photoelectron spectroscopy are discussed. The first photoemission spectra for a sandwich-type flatjet comprised of a water layer encapsulated by two outer layers of an organic solvent (toluene) are also shown.
000586714 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000586714 536__ $$0G:(DE-H253)II-20210015$$aFS-Proposal: II-20210015 (II-20210015)$$cII-20210015$$x1
000586714 536__ $$0G:(EU-Grant)883759$$aAQUACHIRAL - Chiral aqueous-phase chemistry (883759)$$c883759$$fERC-2019-ADG$$x2
000586714 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000586714 693__ $$0EXP:(DE-H253)P-P04-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P04-20150101$$aPETRA III$$fPETRA Beamline P04$$x0
000586714 7001_ $$0P:(DE-H253)PIP1095694$$aButtersack, Tillmann$$b1
000586714 7001_ $$0P:(DE-H253)PIP1088615$$aHaak, Henrik$$b2
000586714 7001_ $$0P:(DE-H253)PIP1086917$$aMalerz, Sebastian$$b3
000586714 7001_ $$00000-0003-3232-5486$$aSchewe, Hanns Christian$$b4
000586714 7001_ $$0P:(DE-H253)PIP1017364$$aTrinter, Florian$$b5
000586714 7001_ $$0P:(DE-H253)PIP1090186$$aMudryk, Karen$$b6
000586714 7001_ $$00000-0003-2406-831X$$aPugini, Michele$$b7
000586714 7001_ $$0P:(DE-H253)PIP1103840$$aCredidio, Bruno$$b8
000586714 7001_ $$0P:(DE-H253)PIP1026212$$aSeidel, Robert$$b9
000586714 7001_ $$0P:(DE-H253)PIP1008114$$aHergenhahn, Uwe$$b10
000586714 7001_ $$0P:(DE-H253)PIP1010420$$aMeijer, Gerard$$b11
000586714 7001_ $$0P:(DE-H253)PIP1086906$$aThuermer, Stephan$$b12
000586714 7001_ $$0P:(DE-H253)PIP1023483$$aWinter, Bernd$$b13
000586714 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/5.0155182$$gVol. 158, no. 23, p. 234202$$n23$$p234202$$tThe journal of chemical physics$$v158$$x0021-9606$$y2023
000586714 8564_ $$uhttps://pubs.aip.org/aip/jcp/article/158/23/234202/2897352/Photoelectron-spectroscopy-from-a-liquid-flatjet
000586714 8564_ $$uhttps://bib-pubdb1.desy.de/record/586714/files/Stemer_JChemPhys_2023.pdf$$yOpenAccess
000586714 8564_ $$uhttps://bib-pubdb1.desy.de/record/586714/files/Stemer_JChemPhys_2023.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000586714 909CO $$ooai:bib-pubdb1.desy.de:586714$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire$$pdnbdelivery
000586714 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1096040$$aExternal Institute$$b0$$kExtern
000586714 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1095694$$aExternal Institute$$b1$$kExtern
000586714 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1088615$$aExternal Institute$$b2$$kExtern
000586714 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1086917$$aExternal Institute$$b3$$kExtern
000586714 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1017364$$aEuropean XFEL$$b5$$kXFEL.EU
000586714 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1017364$$aExternal Institute$$b5$$kExtern
000586714 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1090186$$aExternal Institute$$b6$$kExtern
000586714 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1103840$$aExternal Institute$$b8$$kExtern
000586714 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1026212$$aExternal Institute$$b9$$kExtern
000586714 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008114$$aExternal Institute$$b10$$kExtern
000586714 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1010420$$aExternal Institute$$b11$$kExtern
000586714 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1086906$$aExternal Institute$$b12$$kExtern
000586714 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1023483$$aExternal Institute$$b13$$kExtern
000586714 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000586714 9141_ $$y2023
000586714 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-25
000586714 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000586714 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-25
000586714 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000586714 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-10-21$$wger
000586714 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2022$$d2023-10-21
000586714 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000586714 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000586714 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-21
000586714 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
000586714 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
000586714 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000586714 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000586714 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21
000586714 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
000586714 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000586714 9201_ $$0I:(DE-H253)FS-PETRA-S-20210408$$kFS-PETRA-S$$lPETRA-S$$x1
000586714 980__ $$ajournal
000586714 980__ $$aVDB
000586714 980__ $$aI:(DE-H253)HAS-User-20120731
000586714 980__ $$aI:(DE-H253)FS-PETRA-S-20210408
000586714 980__ $$aUNRESTRICTED
000586714 9801_ $$aFullTexts