000586166 001__ 586166
000586166 005__ 20241223214926.0
000586166 0247_ $$2datacite_doi$$a10.3204/PUBDB-2023-03807
000586166 0247_ $$2arXiv$$aarXiv:2411.16004
000586166 037__ $$aPUBDB-2023-03807
000586166 041__ $$aEnglish
000586166 088__ $$2DESY$$aDESY-23-081
000586166 088__ $$2arXiv$$aarXiv:2411.16004
000586166 1001_ $$0P:(DE-HGF)0$$aBillis, Georgios$$b0
000586166 245__ $$aDrell-Yan $q_T$ spectrum and its uncertainty at N$^3$LL$'$and approximate N$^4$LL
000586166 260__ $$c2024
000586166 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1734616857_1130693
000586166 3367_ $$2ORCID$$aWORKING_PAPER
000586166 3367_ $$028$$2EndNote$$aElectronic Article
000586166 3367_ $$2DRIVER$$apreprint
000586166 3367_ $$2BibTeX$$aARTICLE
000586166 3367_ $$2DataCite$$aOutput Types/Working Paper
000586166 520__ $$aWe consider Drell-Yan production $pp\to V^* X \to L X$ at small$q_T \ll Q$, where $q_T$ and $Q$ arethe total transverse momentum and invariant mass of the leptonic final state $L$.Experimental measurements require fiducial cuts on $L$,which in general introduce enhanced, linear power corrections in $q_T/Q$.We show that they can be unambiguously predicted from factorization,and resummed to the same order as the leading-power contribution.For the fiducial $q_T$ spectrum, they constitute the complete linearpower corrections.We thus obtain predictions for the fiducial $q_T$ spectrum to N$^3$LL andnext-to-leading-power in $q_T/Q$.Matching to full NNLO ($\alpha_s^2$), we find that the linear powercorrections are indeed the dominant ones, and once included by factorization,the remaining fixed-order corrections become almost negligible below $q_T \lesssim 40$ GeV.We also discuss the implications for more complicated observables,and provide predictions for the fiducial $\phi^*$ spectrum at N$^3$LL$+$NNLO.We find excellent agreement with ATLAS and CMS measurements of $q_T$ and $\phi^*$.We also consider the $p_T^\ell$ spectrum. We show that it developsleptonic power corrections in $q_T/(Q - 2p_T^\ell)$, which diverge near the Jacobianpeak $p_T^\ell \sim Q/2$ and must be kept to all powers to obtain a meaningful result there.Doing so, we obtain for the first time an analytically resummed result for the$p_T^\ell$ spectrum around the Jacobian peak at N$^3$LL$+$NNLO.%Our method is based on performing a complete tensor decomposition for hadronicand leptonic tensors. We show that in practice this is equivalent tooften-used recoil prescriptions, for which our results now provide rigorous, formaljustification.Our tensor decomposition yields nine Lorentz-scalar hadronic structure functions, whichfor $Z/\gamma^* \to \ell\ell$ or $W\to\ell\nu$ directly map ontothe commonly used angular coefficients, but also holds for arbitrary leptonic final states.In particular, for suitably defined Born-projected leptons it still yields a LO-likeangular decomposition even when including QED final-state radiation.Finally, we also discuss the application to $q_T$ subtractions. Including theunambiguously predicted fiducial power corrections significantly improves theirperformance, and in particular makes them applicable near kinematic edgeswhere they otherwise break down due to large leptonic power corrections.
000586166 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000586166 536__ $$0G:(EU-Grant)101002090$$aCOLORFREE - High-Precision Global Analysis of Color-Free LHC Processes at Small Recoil (101002090)$$c101002090$$fERC-2020-COG$$x1
000586166 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000586166 7001_ $$0P:(DE-HGF)0$$aEbert, Markus A.$$b1
000586166 7001_ $$0P:(DE-H253)PIP1015356$$aTackmann, Frank$$b2
000586166 7001_ $$0P:(DE-HGF)0$$aMichel, Johannes K. L.$$b3$$eCorresponding author
000586166 8564_ $$uhttps://bib-pubdb1.desy.de/record/586166/files/HTML-Approval_of_scientific_publication.html
000586166 8564_ $$uhttps://bib-pubdb1.desy.de/record/586166/files/PDF-Approval_of_scientific_publication.pdf
000586166 8564_ $$uhttps://bib-pubdb1.desy.de/record/586166/files/2411.16004v1.pdf$$yOpenAccess
000586166 8564_ $$uhttps://bib-pubdb1.desy.de/record/586166/files/2411.16004v1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000586166 909CO $$ooai:bib-pubdb1.desy.de:586166$$pdriver$$popen_access$$pdnbdelivery$$pec_fundedresources$$pVDB$$popenaire
000586166 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1015356$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000586166 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000586166 9141_ $$y2024
000586166 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000586166 915__ $$0StatID:(DE-HGF)0580$$2StatID$$aPublished
000586166 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000586166 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0
000586166 980__ $$apreprint
000586166 980__ $$aVDB
000586166 980__ $$aUNRESTRICTED
000586166 980__ $$aI:(DE-H253)T-20120731
000586166 9801_ $$aFullTexts