001     586016
005     20250724152225.0
024 7 _ |a 10.1021/jacs.2c08579
|2 doi
024 7 _ |a 0002-7863
|2 ISSN
024 7 _ |a 1520-5126
|2 ISSN
024 7 _ |a 1943-2984
|2 ISSN
024 7 _ |a altmetric:136295899
|2 altmetric
024 7 _ |a 36137546
|2 pmid
024 7 _ |a WOS:000861632500001
|2 WOS
024 7 _ |a openalex:W4296793767
|2 openalex
037 _ _ |a PUBDB-2023-03743
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Van Craen, David
|0 P:(DE-H253)PIP1103021
|b 0
|e Corresponding author
245 _ _ |a A Charge-Neutral Self-Assembled L$_2$Zn$_2$ Helicate as Bench-Stable Receptor for Anion Recognition at Nanomolar Concentration
260 _ _ |a Washington, DC
|c 2022
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1687175638_2120735
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Waiting for fulltext
520 _ _ |a The field of anion recognition chemistry is dominated by two fundamental approaches to design receptors. One relies on the formation of covalent bonds resulting in organic and often neutral host species, while the other one utilizes metal-driven self-assembly for the formation of charged receptors with well-defined nanocavities. Yet, the combination of their individual advantages in the form of charge-neutral metal-assembled bench-stable anion receptors is severely lacking. Herein, we present a fluorescent and uncharged double-stranded hydroxyquinoline-based zinc(II) helicate with the ability to bind environmentally relevant dicarboxylate anions with high fidelity in dimethyl sulfoxide (DMSO) at nanomolar concentrations. These dianions are pinned between zinc(II) centers with binding constants up to 145 000 000 M$^{–1}$. The presented investigation exemplifies a pathway to bridge the two design approaches and combine their strength in one structural motif as an efficient anion receptor.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a FS-Proposal: I-20210921 (I-20210921)
|0 G:(DE-H253)I-20210921
|c I-20210921
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P11
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P11-20150101
|6 EXP:(DE-H253)P-P11-20150101
|x 0
700 1 _ |a Kalarikkal, Malavika G.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Holstein, Julian
|0 P:(DE-H253)PIP1009920
|b 2
773 _ _ |a 10.1021/jacs.2c08579
|g Vol. 144, no. 39, p. 18135 - 18143
|0 PERI:(DE-600)1472210-0
|n 39
|p 18135 - 18143
|t Journal of the American Chemical Society
|v 144
|y 2022
|x 0002-7863
856 4 _ |u https://bib-pubdb1.desy.de/record/586016/files/jacs.2c08579.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/586016/files/jacs.2c08579.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:bib-pubdb1.desy.de:586016
|p VDB
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1103021
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1009920
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-09
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CHEM SOC : 2021
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2022-11-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-09
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b J AM CHEM SOC : 2021
|d 2022-11-09
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21