Home > Publications database > Reinforcement learning-trained optimisers and Bayesian optimisation for online particle accelerator tuning > print |
001 | 585442 | ||
005 | 20250715170756.0 | ||
024 | 7 | _ | |a 10.1038/s41598-024-66263-y |2 doi |
024 | 7 | _ | |a 10.3204/PUBDB-2023-03590 |2 datacite_doi |
024 | 7 | _ | |a altmetric:165275955 |2 altmetric |
024 | 7 | _ | |a pmid:38977749 |2 pmid |
024 | 7 | _ | |a WOS:001271178000014 |2 WOS |
024 | 7 | _ | |2 openalex |a openalex:W4400411751 |
037 | _ | _ | |a PUBDB-2023-03590 |
041 | _ | _ | |a English |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Kaiser, Jan |0 P:(DE-H253)PIP1095111 |b 0 |e Corresponding author |
245 | _ | _ | |a Reinforcement learning-trained optimisers and Bayesian optimisation for online particle accelerator tuning |
260 | _ | _ | |a [London] |c 2024 |b Macmillan Publishers Limited, part of Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1727778840_1369329 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Online tuning of particle accelerators is a complex optimisation problem that continues to require manual intervention by experienced human operators. Autonomous tuning is a rapidly expanding field of research, where learning-based methods like Bayesian optimisation (BO) hold great promise in improving plant performance and reducing tuning times. At the same time, reinforcement learning (RL) is a capable method of learning intelligent controllers, and recent work shows that RL can also be used to train domain-specialised optimisers in so-called reinforcement learning-trained optimisation (RLO). In parallel efforts, both algorithms have found successful adoption in particle accelerator tuning. Here we present a comparative case study, assessing the performance of both algorithms while providing a nuanced analysis of the merits and the practical challenges involved in deploying them to real-world facilities. Our results will help practitioners choose a suitable learning-based tuning algorithm for their tuning tasks, accelerating the adoption of autonomous tuning algorithms, ultimately improving the availability of particle accelerators and pushing their operational limits. |
536 | _ | _ | |a 621 - Accelerator Research and Development (POF4-621) |0 G:(DE-HGF)POF4-621 |c POF4-621 |f POF IV |x 0 |
536 | _ | _ | |a InternLabs-0011 - HIR3X - Helmholtz International Laboratory on Reliability, Repetition, Results at the most advanced X-ray Sources (2020_InternLabs-0011) |0 G:(DE-HGF)2020_InternLabs-0011 |c 2020_InternLabs-0011 |x 1 |
536 | _ | _ | |a ZT-I-PF-5-6 - Autonomous Accelerator (AA) (2020_ZT-I-PF-5-6) |0 G:(DE-HGF)2020_ZT-I-PF-5-6 |c 2020_ZT-I-PF-5-6 |x 2 |
542 | _ | _ | |i 2024-07-08 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
542 | _ | _ | |i 2024-07-08 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a SINBAD |e Accelerator Research Experiment at SINBAD |1 EXP:(DE-H253)SINBAD-20200101 |0 EXP:(DE-H253)ARES-20200101 |5 EXP:(DE-H253)ARES-20200101 |x 0 |
700 | 1 | _ | |a Xu, Chenran |0 P:(DE-H253)PIP1093707 |b 1 |
700 | 1 | _ | |a Eichler, Annika |0 P:(DE-H253)PIP1087213 |b 2 |
700 | 1 | _ | |a Santamaria Garcia, Andrea |0 P:(DE-H253)PIP1093488 |b 3 |
700 | 1 | _ | |a Stein, Oliver |0 P:(DE-H253)PIP1014315 |b 4 |
700 | 1 | _ | |a Bruendermann, Erik |0 P:(DE-H253)PIP1089305 |b 5 |
700 | 1 | _ | |a Kuropka, Willi |0 P:(DE-H253)PIP1030512 |b 6 |
700 | 1 | _ | |a Dinter, Hannes |0 P:(DE-H253)PIP1021528 |b 7 |
700 | 1 | _ | |a Mayet, Frank |0 P:(DE-H253)PIP1014786 |b 8 |
700 | 1 | _ | |a Vinatier, Thomas |0 P:(DE-H253)PIP1019775 |b 9 |
700 | 1 | _ | |a Burkart, Florian |0 P:(DE-H253)PIP1080380 |b 10 |
700 | 1 | _ | |a Schlarb, Holger |0 P:(DE-H253)PIP1000212 |b 11 |
773 | 1 | 8 | |a 10.1038/s41598-024-66263-y |b Springer Science and Business Media LLC |d 2024-07-08 |n 1 |p 15733 |3 journal-article |2 Crossref |t Scientific Reports |v 14 |y 2024 |x 2045-2322 |
773 | _ | _ | |a 10.1038/s41598-024-66263-y |g Vol. 14, no. 1, p. 15733 |0 PERI:(DE-600)2615211-3 |n 1 |p 15733 |t Scientific reports |v 14 |y 2024 |x 2045-2322 |
856 | 4 | _ | |u https://www.nature.com/articles/s41598-024-66263-y |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/585442/files/Article%20Approval%20Service.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/585442/files/HTML-Approval_of_scientific_publication.html |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/585442/files/PDF-Approval_of_scientific_publication.pdf |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/585442/files/Article%20Approval%20Service.pdf?subformat=pdfa |x pdfa |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/585442/files/Publishers%20PDF.pdf |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/585442/files/Publishers%20PDF.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:bib-pubdb1.desy.de:585442 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1095111 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1093707 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 2 |6 P:(DE-H253)PIP1087213 |
910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 2 |6 P:(DE-H253)PIP1087213 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1093488 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1014315 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1089305 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 6 |6 P:(DE-H253)PIP1030512 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-H253)PIP1030512 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 7 |6 P:(DE-H253)PIP1021528 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 8 |6 P:(DE-H253)PIP1014786 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 8 |6 P:(DE-H253)PIP1014786 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 9 |6 P:(DE-H253)PIP1019775 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 10 |6 P:(DE-H253)PIP1080380 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 11 |6 P:(DE-H253)PIP1000212 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Materie und Technologie |1 G:(DE-HGF)POF4-620 |0 G:(DE-HGF)POF4-621 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Accelerator Research and Development |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-24 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-24 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-24 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-24 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI REP-UK : 2022 |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-07-29T15:28:26Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-07-29T15:28:26Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-07-29T15:28:26Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-18 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-18 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
915 | p | c | |a DOAJ Journal |2 APC |0 PC:(DE-HGF)0003 |
915 | p | c | |a DEAL: Springer Nature 2020 |2 APC |0 PC:(DE-HGF)0113 |
920 | 1 | _ | |0 I:(DE-H253)MSK-20120731 |k MSK |l Strahlkontrollen |x 0 |
920 | 1 | _ | |0 I:(DE-H253)MPY1-20170908 |k MPY1 |l Beschleunigerphysik Fachgruppe MPY1 |x 1 |
920 | 1 | _ | |0 I:(DE-H253)KIT-20130928 |k KIT |l externe Institute im Bereich Photon Science |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)MSK-20120731 |
980 | _ | _ | |a I:(DE-H253)MPY1-20170908 |
980 | _ | _ | |a I:(DE-H253)KIT-20130928 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1201/9780429434358 |9 -- missing cx lookup -- |2 Crossref |u Huang, X. Beam-based correction and optimization for accelerators (Taylor & Francis, 2020). |
999 | C | 5 | |a 10.1103/PhysRevAccelBeams.22.054601 |1 WF Bergan |9 -- missing cx lookup -- |2 Crossref |u Bergan, W. F. et al. Online storage ring optimization using dimension-reduction and genetic algorithms. Phys. Rev. Acceler. Beams 22, 054601. https://doi.org/10.1103/PhysRevAccelBeams.22.054601 (2019). |t Phys. Rev. Acceler. Beams |v 22 |y 2019 |
999 | C | 5 | |a 10.1016/j.nima.2013.05.046 |9 -- missing cx lookup -- |1 X Huang |p 77 - |2 Crossref |u Huang, X., Corbett, J., Safranek, J. & Wu, J. An algorithm for online optimization of accelerators. Nucl. Instrum. Methods Phys. Res., Sect. A 726, 77–83. https://doi.org/10.1016/j.nima.2013.05.046 (2013). |t Nucl. Instrum. Methods Phys. Res., Sect. A |v 726 |y 2013 |
999 | C | 5 | |2 Crossref |u Bellman, R. Dynamic Programming (Princeton University Press, 1957). |
999 | C | 5 | |2 Crossref |u Roussel, R. et al. Bayesian optimization algorithms for accelerator physics (2024). arXiv:2312.05667. |
999 | C | 5 | |a 10.1103/PhysRevLett.124.124801 |9 -- missing cx lookup -- |2 Crossref |u Duris, J. et al. Bayesian Optimization of a Free-Electron Laser. Phys. Rev. Lett.124 (2020). |
999 | C | 5 | |2 Crossref |u Hanuka, A. et al. Online tuning and light source control using a physics-informed Gaussian process. In Proceedings of the 33rd Conference on Neural Information Processing Systems (2019). |
999 | C | 5 | |a 10.1103/PhysRevLett.126.104801 |9 -- missing cx lookup -- |1 S Jalas |p 1 - |2 Crossref |u Jalas, S. et al. Bayesian optimization of a laser-plasma accelerator. Phys. Rev. Lett. 126, 1. https://doi.org/10.1103/PhysRevLett.126.104801 (2021). |t Phys. Rev. Lett. |v 126 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevAccelBeams.24.062801 |1 R Roussel |9 -- missing cx lookup -- |2 Crossref |u Roussel, R., Hanuka, A. & Edelen, A. Multiobjective bayesian optimization for online accelerator tuning. Phys. Rev. Accel. Beams 24, 062801. https://doi.org/10.1103/PhysRevAccelBeams.24.062801 (2021). |t Phys. Rev. Accel. Beams |v 24 |y 2021 |
999 | C | 5 | |a 10.1103/PhysRevAccelBeams.26.034601 |1 C Xu |9 -- missing cx lookup -- |2 Crossref |u Xu, C. et al. Bayesian optimization of the beam injection process into a storage ring. Phys. Rev. Accel. Beams 26, 034601. https://doi.org/10.1103/PhysRevAccelBeams.26.034601 (2023). |t Phys. Rev. Accel. Beams |v 26 |y 2023 |
999 | C | 5 | |2 Crossref |u McIntire, M., Cope, T., Ermon, S. & Ratner, D. Bayesian Optimization of FEL Performance at LCLS. In Proceedings of the 7th International Particle Accelerator Conference (2016). |
999 | C | 5 | |1 T Boltz |y 2020 |2 Crossref |u Boltz, T. et al. Feedback design for control of the micro-bunching instability based on reinforcement learning. In CERN Yellow Reports: Conference Proceedings 9, 227–227 (2020). |
999 | C | 5 | |a 10.1103/PhysRevAccelBeams.24.104601 |9 -- missing cx lookup -- |2 Crossref |u St. John, J. et al. Real-time artificial intelligence for accelerator control: A study at the Fermilab Booster. Phys. Rev. Acceler. Beams 24, 104601 (2021). |
999 | C | 5 | |1 T Chen |y 2022 |2 Crossref |u Chen, T. et al. Learning to optimize: A primer and a benchmark. J. Mach. Learn. Res. 23, 1–59 (2022). |
999 | C | 5 | |2 Crossref |u Li, K. & Malik, J. Learning to optimize. In International Conference on Learning Representations (2017). |
999 | C | 5 | |2 Crossref |u Li, K. & Malik, J. Learning to optimize neural nets (2017). Preprint available at arXiv:1703.00441. |
999 | C | 5 | |2 Crossref |u Andrychowicz, M. et al. Learning to learn by gradient descent by gradient descent. In Proceedings of the 30th Conference on Neural Information Processing Systems (NIPS 2016) (2016). |
999 | C | 5 | |a 10.1103/PhysRevAccelBeams.23.124801 |1 V Kain |9 -- missing cx lookup -- |2 Crossref |u Kain, V. et al. Sample-efficient reinforcement learning for CERN accelerator control. Phys. Rev. Acceler. Beams 23, 124801. https://doi.org/10.1103/PhysRevAccelBeams.23.124801 (2020). |t Phys. Rev. Acceler. Beams |v 23 |y 2020 |
999 | C | 5 | |2 Crossref |u Kaiser, J., Stein, O. & Eichler, A. Learning-based optimisation of particle accelerators under partial observability without real-world training. In Chaudhuri, K. et al. (eds.) Proceedings of the 39th International Conference on Machine Learning, vol. 162 of Proceedings of Machine Learning Research, 10575–10585 (PMLR, 2022). |
999 | C | 5 | |2 Crossref |u Pang, X., Thulasidasan, S. & Rybarcyk, L. Autonomous control of a particle accelerator using deep reinforcement learning. In Proceedings of the Machine Learning for Engineering Modeling, Simulation, and Design Workshop at Neural Information Processing Systems 2020 (2020). |
999 | C | 5 | |a 10.1016/j.nima.2009.09.048 |9 -- missing cx lookup -- |1 E Meier |p 629 - |2 Crossref |u Meier, E., Biedron, S., LeBlanc, G., Morgan, M. & Wu, J. Electron beam energy and bunch length feed forward control studies using an artificial neural network at the linac coherent light source. Nucl. Instrum. Methods Phys. Res., Sect. A 610, 629–635. https://doi.org/10.1016/j.nima.2009.09.048 (2009). |t Nucl. Instrum. Methods Phys. Res., Sect. A |v 610 |y 2009 |
999 | C | 5 | |a 10.1109/TNS.2016.2543203 |9 -- missing cx lookup -- |2 Crossref |u Edelen, A. L. et al. Neural networks for modeling and control of particle accelerators. IEEE Trans. Nuclear Sci. 63, 878–897. https://doi.org/10.1109/TNS.2016.2543203 (2016). Basically model predictive control accompanied by a nice literature overview. |
999 | C | 5 | |a 10.1103/PhysRevLett.121.044801 |1 A Scheinker |9 -- missing cx lookup -- |2 Crossref |u Scheinker, A., Edelen, A., Bohler, D., Emma, C. & Lutman, A. Demonstration of model-independent control of the longitudinal phase space of electron beams in the linac-coherent light source with femtosecond resolution. Phys. Rev. Lett. 121, 044801. https://doi.org/10.1103/PhysRevLett.121.044801 (2018). |t Phys. Rev. Lett. |v 121 |y 2018 |
999 | C | 5 | |a 10.1038/s41586-021-04301-9 |9 -- missing cx lookup -- |1 J Degrave |p 414 - |2 Crossref |u Degrave, J. et al. Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602, 414–419. https://doi.org/10.1038/s41586-021-04301-9 (2022). |t Nature |v 602 |y 2022 |
999 | C | 5 | |a 10.1088/1741-4326/ac121b |9 -- missing cx lookup -- |2 Crossref |u Seo, J. et al. Feedforward beta control in the KSTAR tokamak by deep reinforcement learning. Nuclear Fusion 61. https://doi.org/10.1088/1741-4326/ac121b (2021). |
999 | C | 5 | |a 10.1088/1741-4326/ac79be |9 -- missing cx lookup -- |2 Crossref |u Seo, J. et al. Development of an operation trajectory design algorithm for control of multiple 0D parameters using deep reinforcement learning in KSTAR. Nuclear Fusion 62. https://doi.org/10.1088/1741-4326/ac79be (2022). |
999 | C | 5 | |a 10.3390/app10093207 |9 -- missing cx lookup -- |2 Crossref |u Guerra-Ramos, D., Trujillo-Sevilla, J. & Rodríguez-Ramos, J. M. Towards piston fine tuning of segmented mirrors through reinforcement learning. Appl. Sci. (Switzerland)10. https://doi.org/10.3390/app10093207 (2020). |
999 | C | 5 | |a 10.1051/0004-6361/202243311 |9 -- missing cx lookup -- |2 Crossref |u Nousiainen, J. et al. Toward on-sky adaptive optics control using reinforcement learning: Model-based policy optimization for adaptive optics. Astron. Astrophysi. 664. https://doi.org/10.1051/0004-6361/202243311 (2022). |
999 | C | 5 | |a 10.1093/mnras/stab1401 |9 -- missing cx lookup -- |1 S Yatawatta |p 2141 - |2 Crossref |u Yatawatta, S. & Avruch, I. M. Deep reinforcement learning for smart calibration of radio telescopes. Mon. Not. R. Astron. Soc. 505, 2141–2150. https://doi.org/10.1093/mnras/stab1401 (2021). |t Mon. Not. R. Astron. Soc. |v 505 |y 2021 |
999 | C | 5 | |a 10.1021/acscentsci.7b00492 |9 -- missing cx lookup -- |1 Z Zhou |p 1337 - |2 Crossref |u Zhou, Z., Li, X. & Zare, R. N. Optimizing chemical reactions with deep reinforcement learning. ACS Cent. Sci. 3, 1337–1344. https://doi.org/10.1021/acscentsci.7b00492 (2017). |t ACS Cent. Sci. |v 3 |y 2017 |
999 | C | 5 | |a 10.1557/s43577-021-00051-1 |9 -- missing cx lookup -- |1 JR Deneault |p 566 - |2 Crossref |u Deneault, J. R. et al. Toward autonomous additive manufacturing: Bayesian optimization on a 3D printer. MRS Bull. 46, 566–575. https://doi.org/10.1557/s43577-021-00051-1 (2021). |t MRS Bull. |v 46 |y 2021 |
999 | C | 5 | |a 10.1109/ECC.2016.7810598 |9 -- missing cx lookup -- |2 Crossref |u Abdelrahman, H., Berkenkamp, F., Poland, J. & Krause, A. Bayesian optimization for maximum power point tracking in photovoltaic power plants. In 2016 European Control Conference (ECC), 2078–2083, https://doi.org/10.1109/ECC.2016.7810598 (Institute of Electrical and Electronics Engineers Inc., 2016). |
999 | C | 5 | |a 10.2514/1.T5774 |9 -- missing cx lookup -- |1 Y Xiong |p 37 - |2 Crossref |u Xiong, Y., Guo, L., Huang, Y. & Chen, L. Intelligent thermal control strategy based on reinforcement learning for space telescope. J. Thermophys. Heat Transfer 34, 37–44. https://doi.org/10.2514/1.T5774 (2020). |t J. Thermophys. Heat Transfer |v 34 |y 2020 |
999 | C | 5 | |a 10.1115/1.4051072 |9 -- missing cx lookup -- |2 Crossref |u Xiong, Y., Guo, L. & Tian, D. Application of deep reinforcement learning to thermal control of space telescope. J. Thermal Sci. Eng. Appl. 14. https://doi.org/10.1115/1.4051072 (2022). |
999 | C | 5 | |a 10.1016/j.conengprac.2017.09.007 |9 -- missing cx lookup -- |1 A Baheri |p 131 - |2 Crossref |u Baheri, A., Bin-Karim, S., Bafandeh, A. & Vermillion, C. Real-time control using Bayesian optimization: A case study in airborne wind energy systems. Control. Eng. Pract. 69, 131–140. https://doi.org/10.1016/j.conengprac.2017.09.007 (2017). |t Control. Eng. Pract. |v 69 |y 2017 |
999 | C | 5 | |a 10.1109/JSAC.2021.3078490 |9 -- missing cx lookup -- |1 L Maggi |p 1858 - |2 Crossref |u Maggi, L., Valcarce, A. & Hoydis, J. Bayesian optimization for radio resource management: Open loop power control. IEEE J. Sel. Areas Commun. 39, 1858–1871. https://doi.org/10.1109/JSAC.2021.3078490 (2021). |t IEEE J. Sel. Areas Commun. |v 39 |y 2021 |
999 | C | 5 | |a 10.1145/3408308.3427986 |9 -- missing cx lookup -- |2 Crossref |u Ding, X., Du, W. & Cerpa, A. E. MB2C: Model-based deep reinforcement learning for multi-zone building control. In BuildSys 2020 - Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, 50–59, https://doi.org/10.1145/3408308.3427986 (Association for Computing Machinery, Inc, 2020). |
999 | C | 5 | |a 10.1016/j.egyai.2022.100202 |9 -- missing cx lookup -- |2 Crossref |u Nweye, K., Liu, B., Stone, P. & Nagy, Z. Real-world challenges for multi-agent reinforcement learning in grid-interactive buildings. Energy AI 10. https://doi.org/10.1016/j.egyai.2022.100202 (2022). |
999 | C | 5 | |a 10.3390/instruments5030028 |9 -- missing cx lookup -- |2 Crossref |u Panofski, E. et al. Commissioning results and electron beam characterization with the S-band photoinjector at SINBAD-ARES. Instruments 5 (2021). |
999 | C | 5 | |a 10.18429/JACoW-LINAC2022-THPOJO01 |9 -- missing cx lookup -- |2 Crossref |u Burkart, F. et al. The ARES Linac at DESY. In Proceedings of the 31st International Linear Accelerator Conference (LINAC’22), no. 31 in International Linear Accelerator Conference, 691–694, https://doi.org/10.18429/JACoW-LINAC2022-THPOJO01 (JACoW Publishing, Geneva, Switzerland, 2022). |
999 | C | 5 | |a 10.7551/mitpress/3206.001.0001 |9 -- missing cx lookup -- |2 Crossref |u Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine Learning (The MIT Press, 2005). |
999 | C | 5 | |a 10.1093/comjnl/7.4.308 |9 -- missing cx lookup -- |2 Crossref |u Nelder, J. A. & Mead, R. A simplex method for function minimization. Comput. J. 7 (1965). |
999 | C | 5 | |a 10.1103/PhysRevSTAB.16.102803 |1 A Scheinker |9 -- missing cx lookup -- |2 Crossref |u Scheinker, A., Pang, X. & Rybarcyk, L. Model-independent particle accelerator tuning. Phys. Rev. ST Accel. Beams 16, 102803. https://doi.org/10.1103/PhysRevSTAB.16.102803 (2013). |t Phys. Rev. ST Accel. Beams |v 16 |y 2013 |
999 | C | 5 | |2 Crossref |u Hwang, K. et al. Prior-mean-assisted bayesian optimization application on frib front-end tunning (2022). arXiv:2211.06400. |
999 | C | 5 | |2 Crossref |u Boltz, T. et al. More sample-efficient tuning of particle accelerators with bayesian optimization and prior mean models (2024). arXiv:2403.03225. |
999 | C | 5 | |a 10.1103/PhysRevAccelBeams.27.054601 |9 -- missing cx lookup -- |2 Crossref |u Kaiser, J., Xu, C., Eichler, A. & Santamaria Garcia, A. Bridging the gap between machine learning and particle accelerator physics with high-speed, differentiable simulations. Phys. Rev. Acceler. Beams (2024). |
999 | C | 5 | |2 Crossref |u Dulac-Arnold, G., Mankowitz, D. & Hester, T. Challenges of real-world reinforcement learning. In Proceedings of the 36th International Conference on Machine Learning (2019). |
999 | C | 5 | |a 10.1109/IROS.2017.8202133 |9 -- missing cx lookup -- |2 Crossref |u Tobin, J. et al. Domain randomization for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 23–30. https://doi.org/10.1109/IROS.2017.8202133 (2017). |
999 | C | 5 | |2 Crossref |u OpenAI et al. Solving Rubik’s cube with a robot hand (2019). Preprint available at arXiv:1910.07113. |
999 | C | 5 | |a 10.1103/PhysRevLett.128.204801 |1 R Roussel |9 -- missing cx lookup -- |2 Crossref |u Roussel, R. et al. Differentiable preisach modeling for characterization and optimization of particle accelerator systems with hysteresis. Phys. Rev. Lett. 128, 204801. https://doi.org/10.1103/PhysRevLett.128.204801 (2022). |t Phys. Rev. Lett. |v 128 |y 2022 |
999 | C | 5 | |a 10.1038/s41467-021-25757-3 |9 -- missing cx lookup -- |1 R Roussel |p 5612 - |2 Crossref |u Roussel, R. et al. Turn-key constrained parameter space exploration for particle accelerators using bayesian active learning. Nat. Commun. 12, 5612 (2021). |t Nat. Commun. |v 12 |y 2021 |
999 | C | 5 | |a 10.18429/JACoW-IPAC2023-THPL028 |9 -- missing cx lookup -- |2 Crossref |u Xu, C. et al. Bayesian optimization for SASE tuning at the European XFEL. In Proc. IPAC’23, no. 14 in IPAC’23 - 14th International Particle Accelerator Conference, 4483–4486, https://doi.org/10.18429/JACoW-IPAC2023-THPL028 (JACoW Publishing, Geneva, Switzerland, 2023). |
999 | C | 5 | |a 10.1103/PhysRevAccelBeams.25.062802 |1 J Kirschner |9 -- missing cx lookup -- |2 Crossref |u Kirschner, J. et al. Tuning particle accelerators with safety constraints using bayesian optimization. Phys. Rev. Accel. Beams 25, 062802. https://doi.org/10.1103/PhysRevAccelBeams.25.062802 (2022). |t Phys. Rev. Accel. Beams |v 25 |y 2022 |
999 | C | 5 | |a 10.18429/JACoW-IPAC-2023-THPL029 |9 -- missing cx lookup -- |2 Crossref |u Xu, C. et al. Beam trajectory control with lattice-agnostic reinforcement learning. In Proc. IPAC’23, https://doi.org/10.18429/JACoW-IPAC-2023-THPL029 (2023). |
999 | C | 5 | |a 10.18429/JACoW-IPAC2023-THPL038 |9 -- missing cx lookup -- |2 Crossref |u Hirlaender, S. et al. Ultra fast reinforcement learning demonstrated at cern awake. In Proc. IPAC’23, no. 14 in IPAC’23 - 14th International Particle Accelerator Conference, 4510–4513, https://doi.org/10.18429/JACoW-IPAC2023-THPL038 (JACoW Publishing, Geneva, Switzerland, 2023). |
999 | C | 5 | |2 Crossref |u Krause, A. & Ong, C. Contextual Gaussian process bandit optimization. In Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F. & Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 24 (Curran Associates, Inc., 2011). |
999 | C | 5 | |2 Crossref |u Nyikosa, F. M., Osborne, M. A. & Roberts, S. J. Bayesian optimization for dynamic problems (2018). Preprint available at arXiv:1803.03432. |
999 | C | 5 | |a 10.18429/jacow-ipac2023-thpl007 |9 -- missing cx lookup -- |2 Crossref |u Kuklev, N., Sun, Y., Shang, H., Borland, M. & Fystro, G. I. Robust adaptive bayesian optimization. In Proc. IPAC’23, no. 14 in IPAC’23 - 14th International Particle Accelerator Conference, 4377–4380, https://doi.org/10.18429/jacow-ipac2023-thpl007 (JACoW Publishing, Geneva, Switzerland, 2023). |
999 | C | 5 | |2 Crossref |u Stein, O., Kaiser, J. & Eichler, A. Accelerating linear beam dynamics simulations for machine learning applications. In Proceedings of the 13th International Particle Accelerator Conference (2022). |
999 | C | 5 | |2 Crossref |u Kaiser, J. & Xu, C. Cheetah (2023). |
999 | C | 5 | |2 Crossref |u Brockman, G. et al. OpenAI Gym (2016). |
999 | C | 5 | |a 10.5281/zenodo.8127026 |1 M Towers |9 -- missing cx lookup -- |2 Crossref |u Towers, M. et al. Gymnasiumhttps://doi.org/10.5281/zenodo.8127026 (2023). |t Gymnasium |y 2023 |
999 | C | 5 | |2 Crossref |u Fujimoto, S., van Hoof, H. & Meger, D. Addressing function approximation error in actor-critic methods (2018). Preprint available at arXiv:1802.09477v3. |
999 | C | 5 | |2 Crossref |u Raffin, A. et al. Stable Baselines3 (2019). |
999 | C | 5 | |2 Crossref |u Balandat, M. et al. BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. In Advances in Neural Information Processing Systems 33 (2020). |
999 | C | 5 | |a 10.1007/978-1-4615-7892-5 |9 -- missing cx lookup -- |2 Crossref |u Matérn, B. Spatial Variation, vol. 36 (Springer New York, 1986), 2 edn. |
999 | C | 5 | |a 10.1023/A:1008306431147 |9 -- missing cx lookup -- |1 DR Jones |p 455 - |2 Crossref |u Jones, D. R., Schonlau, M. & Welch, W. J. Efficient global optimization of expensive black-box functions. J. Global Optim. 13, 455–492. https://doi.org/10.1023/A:1008306431147 (1998). |t J. Global Optim. |v 13 |y 1998 |
999 | C | 5 | |a 10.18429/jacow-ipac2023-thpl164 |9 -- missing cx lookup -- |2 Crossref |u Roussel, R., Edelen, A., Bartnik, A. & Mayes, C. Xopt: A simplified framework for optimization of accelerator problems using advanced algorithms. In Proc. IPAC’23, no. 14 in IPAC’23 - 14th International Particle Accelerator Conference, 4796–4799, https://doi.org/10.18429/jacow-ipac2023-thpl164 (JACoW Publishing, Geneva, Switzerland, 2023). |
999 | C | 5 | |2 Crossref |u Fundamental Algorithms for Scientific Computing in Python. Virtanen, P. et al. SciPy 1.0. Nat. Methods17, 261–272 (2020). |
999 | C | 5 | |a 10.1109/TCST.2021.3136133 |9 -- missing cx lookup -- |1 A Scheinker |p 2261 - |2 Crossref |u Scheinker, A., Huang, E.-C. & Taylor, C. Extremum seeking-based control system for particle accelerator beam loss minimization. IEEE Trans. Control Syst. Technol. 30, 2261–2268. https://doi.org/10.1109/TCST.2021.3136133 (2022). |t IEEE Trans. Control Syst. Technol. |v 30 |y 2022 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|