001     585442
005     20250715170756.0
024 7 _ |a 10.1038/s41598-024-66263-y
|2 doi
024 7 _ |a 10.3204/PUBDB-2023-03590
|2 datacite_doi
024 7 _ |a altmetric:165275955
|2 altmetric
024 7 _ |a pmid:38977749
|2 pmid
024 7 _ |a WOS:001271178000014
|2 WOS
024 7 _ |2 openalex
|a openalex:W4400411751
037 _ _ |a PUBDB-2023-03590
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Kaiser, Jan
|0 P:(DE-H253)PIP1095111
|b 0
|e Corresponding author
245 _ _ |a Reinforcement learning-trained optimisers and Bayesian optimisation for online particle accelerator tuning
260 _ _ |a [London]
|c 2024
|b Macmillan Publishers Limited, part of Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1727778840_1369329
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Online tuning of particle accelerators is a complex optimisation problem that continues to require manual intervention by experienced human operators. Autonomous tuning is a rapidly expanding field of research, where learning-based methods like Bayesian optimisation (BO) hold great promise in improving plant performance and reducing tuning times. At the same time, reinforcement learning (RL) is a capable method of learning intelligent controllers, and recent work shows that RL can also be used to train domain-specialised optimisers in so-called reinforcement learning-trained optimisation (RLO). In parallel efforts, both algorithms have found successful adoption in particle accelerator tuning. Here we present a comparative case study, assessing the performance of both algorithms while providing a nuanced analysis of the merits and the practical challenges involved in deploying them to real-world facilities. Our results will help practitioners choose a suitable learning-based tuning algorithm for their tuning tasks, accelerating the adoption of autonomous tuning algorithms, ultimately improving the availability of particle accelerators and pushing their operational limits.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
536 _ _ |a InternLabs-0011 - HIR3X - Helmholtz International Laboratory on Reliability, Repetition, Results at the most advanced X-ray Sources (2020_InternLabs-0011)
|0 G:(DE-HGF)2020_InternLabs-0011
|c 2020_InternLabs-0011
|x 1
536 _ _ |a ZT-I-PF-5-6 - Autonomous Accelerator (AA) (2020_ZT-I-PF-5-6)
|0 G:(DE-HGF)2020_ZT-I-PF-5-6
|c 2020_ZT-I-PF-5-6
|x 2
542 _ _ |i 2024-07-08
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
542 _ _ |i 2024-07-08
|2 Crossref
|u https://creativecommons.org/licenses/by/4.0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a SINBAD
|e Accelerator Research Experiment at SINBAD
|1 EXP:(DE-H253)SINBAD-20200101
|0 EXP:(DE-H253)ARES-20200101
|5 EXP:(DE-H253)ARES-20200101
|x 0
700 1 _ |a Xu, Chenran
|0 P:(DE-H253)PIP1093707
|b 1
700 1 _ |a Eichler, Annika
|0 P:(DE-H253)PIP1087213
|b 2
700 1 _ |a Santamaria Garcia, Andrea
|0 P:(DE-H253)PIP1093488
|b 3
700 1 _ |a Stein, Oliver
|0 P:(DE-H253)PIP1014315
|b 4
700 1 _ |a Bruendermann, Erik
|0 P:(DE-H253)PIP1089305
|b 5
700 1 _ |a Kuropka, Willi
|0 P:(DE-H253)PIP1030512
|b 6
700 1 _ |a Dinter, Hannes
|0 P:(DE-H253)PIP1021528
|b 7
700 1 _ |a Mayet, Frank
|0 P:(DE-H253)PIP1014786
|b 8
700 1 _ |a Vinatier, Thomas
|0 P:(DE-H253)PIP1019775
|b 9
700 1 _ |a Burkart, Florian
|0 P:(DE-H253)PIP1080380
|b 10
700 1 _ |a Schlarb, Holger
|0 P:(DE-H253)PIP1000212
|b 11
773 1 8 |a 10.1038/s41598-024-66263-y
|b Springer Science and Business Media LLC
|d 2024-07-08
|n 1
|p 15733
|3 journal-article
|2 Crossref
|t Scientific Reports
|v 14
|y 2024
|x 2045-2322
773 _ _ |a 10.1038/s41598-024-66263-y
|g Vol. 14, no. 1, p. 15733
|0 PERI:(DE-600)2615211-3
|n 1
|p 15733
|t Scientific reports
|v 14
|y 2024
|x 2045-2322
856 4 _ |u https://www.nature.com/articles/s41598-024-66263-y
856 4 _ |u https://bib-pubdb1.desy.de/record/585442/files/Article%20Approval%20Service.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/585442/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/585442/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/585442/files/Article%20Approval%20Service.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://bib-pubdb1.desy.de/record/585442/files/Publishers%20PDF.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/585442/files/Publishers%20PDF.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:585442
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1095111
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1093707
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1087213
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 2
|6 P:(DE-H253)PIP1087213
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1093488
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1014315
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1089305
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1030512
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1030512
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1021528
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1014786
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1014786
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 9
|6 P:(DE-H253)PIP1019775
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 10
|6 P:(DE-H253)PIP1080380
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 11
|6 P:(DE-H253)PIP1000212
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-24
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-07-29T15:28:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-07-29T15:28:26Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-07-29T15:28:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 1 _ |0 I:(DE-H253)MSK-20120731
|k MSK
|l Strahlkontrollen
|x 0
920 1 _ |0 I:(DE-H253)MPY1-20170908
|k MPY1
|l Beschleunigerphysik Fachgruppe MPY1
|x 1
920 1 _ |0 I:(DE-H253)KIT-20130928
|k KIT
|l externe Institute im Bereich Photon Science
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-H253)MSK-20120731
980 _ _ |a I:(DE-H253)MPY1-20170908
980 _ _ |a I:(DE-H253)KIT-20130928
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts
999 C 5 |a 10.1201/9780429434358
|9 -- missing cx lookup --
|2 Crossref
|u Huang, X. Beam-based correction and optimization for accelerators (Taylor & Francis, 2020).
999 C 5 |a 10.1103/PhysRevAccelBeams.22.054601
|1 WF Bergan
|9 -- missing cx lookup --
|2 Crossref
|u Bergan, W. F. et al. Online storage ring optimization using dimension-reduction and genetic algorithms. Phys. Rev. Acceler. Beams 22, 054601. https://doi.org/10.1103/PhysRevAccelBeams.22.054601 (2019).
|t Phys. Rev. Acceler. Beams
|v 22
|y 2019
999 C 5 |a 10.1016/j.nima.2013.05.046
|9 -- missing cx lookup --
|1 X Huang
|p 77 -
|2 Crossref
|u Huang, X., Corbett, J., Safranek, J. & Wu, J. An algorithm for online optimization of accelerators. Nucl. Instrum. Methods Phys. Res., Sect. A 726, 77–83. https://doi.org/10.1016/j.nima.2013.05.046 (2013).
|t Nucl. Instrum. Methods Phys. Res., Sect. A
|v 726
|y 2013
999 C 5 |2 Crossref
|u Bellman, R. Dynamic Programming (Princeton University Press, 1957).
999 C 5 |2 Crossref
|u Roussel, R. et al. Bayesian optimization algorithms for accelerator physics (2024). arXiv:2312.05667.
999 C 5 |a 10.1103/PhysRevLett.124.124801
|9 -- missing cx lookup --
|2 Crossref
|u Duris, J. et al. Bayesian Optimization of a Free-Electron Laser. Phys. Rev. Lett.124 (2020).
999 C 5 |2 Crossref
|u Hanuka, A. et al. Online tuning and light source control using a physics-informed Gaussian process. In Proceedings of the 33rd Conference on Neural Information Processing Systems (2019).
999 C 5 |a 10.1103/PhysRevLett.126.104801
|9 -- missing cx lookup --
|1 S Jalas
|p 1 -
|2 Crossref
|u Jalas, S. et al. Bayesian optimization of a laser-plasma accelerator. Phys. Rev. Lett. 126, 1. https://doi.org/10.1103/PhysRevLett.126.104801 (2021).
|t Phys. Rev. Lett.
|v 126
|y 2021
999 C 5 |a 10.1103/PhysRevAccelBeams.24.062801
|1 R Roussel
|9 -- missing cx lookup --
|2 Crossref
|u Roussel, R., Hanuka, A. & Edelen, A. Multiobjective bayesian optimization for online accelerator tuning. Phys. Rev. Accel. Beams 24, 062801. https://doi.org/10.1103/PhysRevAccelBeams.24.062801 (2021).
|t Phys. Rev. Accel. Beams
|v 24
|y 2021
999 C 5 |a 10.1103/PhysRevAccelBeams.26.034601
|1 C Xu
|9 -- missing cx lookup --
|2 Crossref
|u Xu, C. et al. Bayesian optimization of the beam injection process into a storage ring. Phys. Rev. Accel. Beams 26, 034601. https://doi.org/10.1103/PhysRevAccelBeams.26.034601 (2023).
|t Phys. Rev. Accel. Beams
|v 26
|y 2023
999 C 5 |2 Crossref
|u McIntire, M., Cope, T., Ermon, S. & Ratner, D. Bayesian Optimization of FEL Performance at LCLS. In Proceedings of the 7th International Particle Accelerator Conference (2016).
999 C 5 |1 T Boltz
|y 2020
|2 Crossref
|u Boltz, T. et al. Feedback design for control of the micro-bunching instability based on reinforcement learning. In CERN Yellow Reports: Conference Proceedings 9, 227–227 (2020).
999 C 5 |a 10.1103/PhysRevAccelBeams.24.104601
|9 -- missing cx lookup --
|2 Crossref
|u St. John, J. et al. Real-time artificial intelligence for accelerator control: A study at the Fermilab Booster. Phys. Rev. Acceler. Beams 24, 104601 (2021).
999 C 5 |1 T Chen
|y 2022
|2 Crossref
|u Chen, T. et al. Learning to optimize: A primer and a benchmark. J. Mach. Learn. Res. 23, 1–59 (2022).
999 C 5 |2 Crossref
|u Li, K. & Malik, J. Learning to optimize. In International Conference on Learning Representations (2017).
999 C 5 |2 Crossref
|u Li, K. & Malik, J. Learning to optimize neural nets (2017). Preprint available at arXiv:1703.00441.
999 C 5 |2 Crossref
|u Andrychowicz, M. et al. Learning to learn by gradient descent by gradient descent. In Proceedings of the 30th Conference on Neural Information Processing Systems (NIPS 2016) (2016).
999 C 5 |a 10.1103/PhysRevAccelBeams.23.124801
|1 V Kain
|9 -- missing cx lookup --
|2 Crossref
|u Kain, V. et al. Sample-efficient reinforcement learning for CERN accelerator control. Phys. Rev. Acceler. Beams 23, 124801. https://doi.org/10.1103/PhysRevAccelBeams.23.124801 (2020).
|t Phys. Rev. Acceler. Beams
|v 23
|y 2020
999 C 5 |2 Crossref
|u Kaiser, J., Stein, O. & Eichler, A. Learning-based optimisation of particle accelerators under partial observability without real-world training. In Chaudhuri, K. et al. (eds.) Proceedings of the 39th International Conference on Machine Learning, vol. 162 of Proceedings of Machine Learning Research, 10575–10585 (PMLR, 2022).
999 C 5 |2 Crossref
|u Pang, X., Thulasidasan, S. & Rybarcyk, L. Autonomous control of a particle accelerator using deep reinforcement learning. In Proceedings of the Machine Learning for Engineering Modeling, Simulation, and Design Workshop at Neural Information Processing Systems 2020 (2020).
999 C 5 |a 10.1016/j.nima.2009.09.048
|9 -- missing cx lookup --
|1 E Meier
|p 629 -
|2 Crossref
|u Meier, E., Biedron, S., LeBlanc, G., Morgan, M. & Wu, J. Electron beam energy and bunch length feed forward control studies using an artificial neural network at the linac coherent light source. Nucl. Instrum. Methods Phys. Res., Sect. A 610, 629–635. https://doi.org/10.1016/j.nima.2009.09.048 (2009).
|t Nucl. Instrum. Methods Phys. Res., Sect. A
|v 610
|y 2009
999 C 5 |a 10.1109/TNS.2016.2543203
|9 -- missing cx lookup --
|2 Crossref
|u Edelen, A. L. et al. Neural networks for modeling and control of particle accelerators. IEEE Trans. Nuclear Sci. 63, 878–897. https://doi.org/10.1109/TNS.2016.2543203 (2016). Basically model predictive control accompanied by a nice literature overview.
999 C 5 |a 10.1103/PhysRevLett.121.044801
|1 A Scheinker
|9 -- missing cx lookup --
|2 Crossref
|u Scheinker, A., Edelen, A., Bohler, D., Emma, C. & Lutman, A. Demonstration of model-independent control of the longitudinal phase space of electron beams in the linac-coherent light source with femtosecond resolution. Phys. Rev. Lett. 121, 044801. https://doi.org/10.1103/PhysRevLett.121.044801 (2018).
|t Phys. Rev. Lett.
|v 121
|y 2018
999 C 5 |a 10.1038/s41586-021-04301-9
|9 -- missing cx lookup --
|1 J Degrave
|p 414 -
|2 Crossref
|u Degrave, J. et al. Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602, 414–419. https://doi.org/10.1038/s41586-021-04301-9 (2022).
|t Nature
|v 602
|y 2022
999 C 5 |a 10.1088/1741-4326/ac121b
|9 -- missing cx lookup --
|2 Crossref
|u Seo, J. et al. Feedforward beta control in the KSTAR tokamak by deep reinforcement learning. Nuclear Fusion 61. https://doi.org/10.1088/1741-4326/ac121b (2021).
999 C 5 |a 10.1088/1741-4326/ac79be
|9 -- missing cx lookup --
|2 Crossref
|u Seo, J. et al. Development of an operation trajectory design algorithm for control of multiple 0D parameters using deep reinforcement learning in KSTAR. Nuclear Fusion 62. https://doi.org/10.1088/1741-4326/ac79be (2022).
999 C 5 |a 10.3390/app10093207
|9 -- missing cx lookup --
|2 Crossref
|u Guerra-Ramos, D., Trujillo-Sevilla, J. & Rodríguez-Ramos, J. M. Towards piston fine tuning of segmented mirrors through reinforcement learning. Appl. Sci. (Switzerland)10. https://doi.org/10.3390/app10093207 (2020).
999 C 5 |a 10.1051/0004-6361/202243311
|9 -- missing cx lookup --
|2 Crossref
|u Nousiainen, J. et al. Toward on-sky adaptive optics control using reinforcement learning: Model-based policy optimization for adaptive optics. Astron. Astrophysi. 664. https://doi.org/10.1051/0004-6361/202243311 (2022).
999 C 5 |a 10.1093/mnras/stab1401
|9 -- missing cx lookup --
|1 S Yatawatta
|p 2141 -
|2 Crossref
|u Yatawatta, S. & Avruch, I. M. Deep reinforcement learning for smart calibration of radio telescopes. Mon. Not. R. Astron. Soc. 505, 2141–2150. https://doi.org/10.1093/mnras/stab1401 (2021).
|t Mon. Not. R. Astron. Soc.
|v 505
|y 2021
999 C 5 |a 10.1021/acscentsci.7b00492
|9 -- missing cx lookup --
|1 Z Zhou
|p 1337 -
|2 Crossref
|u Zhou, Z., Li, X. & Zare, R. N. Optimizing chemical reactions with deep reinforcement learning. ACS Cent. Sci. 3, 1337–1344. https://doi.org/10.1021/acscentsci.7b00492 (2017).
|t ACS Cent. Sci.
|v 3
|y 2017
999 C 5 |a 10.1557/s43577-021-00051-1
|9 -- missing cx lookup --
|1 JR Deneault
|p 566 -
|2 Crossref
|u Deneault, J. R. et al. Toward autonomous additive manufacturing: Bayesian optimization on a 3D printer. MRS Bull. 46, 566–575. https://doi.org/10.1557/s43577-021-00051-1 (2021).
|t MRS Bull.
|v 46
|y 2021
999 C 5 |a 10.1109/ECC.2016.7810598
|9 -- missing cx lookup --
|2 Crossref
|u Abdelrahman, H., Berkenkamp, F., Poland, J. & Krause, A. Bayesian optimization for maximum power point tracking in photovoltaic power plants. In 2016 European Control Conference (ECC), 2078–2083, https://doi.org/10.1109/ECC.2016.7810598 (Institute of Electrical and Electronics Engineers Inc., 2016).
999 C 5 |a 10.2514/1.T5774
|9 -- missing cx lookup --
|1 Y Xiong
|p 37 -
|2 Crossref
|u Xiong, Y., Guo, L., Huang, Y. & Chen, L. Intelligent thermal control strategy based on reinforcement learning for space telescope. J. Thermophys. Heat Transfer 34, 37–44. https://doi.org/10.2514/1.T5774 (2020).
|t J. Thermophys. Heat Transfer
|v 34
|y 2020
999 C 5 |a 10.1115/1.4051072
|9 -- missing cx lookup --
|2 Crossref
|u Xiong, Y., Guo, L. & Tian, D. Application of deep reinforcement learning to thermal control of space telescope. J. Thermal Sci. Eng. Appl. 14. https://doi.org/10.1115/1.4051072 (2022).
999 C 5 |a 10.1016/j.conengprac.2017.09.007
|9 -- missing cx lookup --
|1 A Baheri
|p 131 -
|2 Crossref
|u Baheri, A., Bin-Karim, S., Bafandeh, A. & Vermillion, C. Real-time control using Bayesian optimization: A case study in airborne wind energy systems. Control. Eng. Pract. 69, 131–140. https://doi.org/10.1016/j.conengprac.2017.09.007 (2017).
|t Control. Eng. Pract.
|v 69
|y 2017
999 C 5 |a 10.1109/JSAC.2021.3078490
|9 -- missing cx lookup --
|1 L Maggi
|p 1858 -
|2 Crossref
|u Maggi, L., Valcarce, A. & Hoydis, J. Bayesian optimization for radio resource management: Open loop power control. IEEE J. Sel. Areas Commun. 39, 1858–1871. https://doi.org/10.1109/JSAC.2021.3078490 (2021).
|t IEEE J. Sel. Areas Commun.
|v 39
|y 2021
999 C 5 |a 10.1145/3408308.3427986
|9 -- missing cx lookup --
|2 Crossref
|u Ding, X., Du, W. & Cerpa, A. E. MB2C: Model-based deep reinforcement learning for multi-zone building control. In BuildSys 2020 - Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, 50–59, https://doi.org/10.1145/3408308.3427986 (Association for Computing Machinery, Inc, 2020).
999 C 5 |a 10.1016/j.egyai.2022.100202
|9 -- missing cx lookup --
|2 Crossref
|u Nweye, K., Liu, B., Stone, P. & Nagy, Z. Real-world challenges for multi-agent reinforcement learning in grid-interactive buildings. Energy AI 10. https://doi.org/10.1016/j.egyai.2022.100202 (2022).
999 C 5 |a 10.3390/instruments5030028
|9 -- missing cx lookup --
|2 Crossref
|u Panofski, E. et al. Commissioning results and electron beam characterization with the S-band photoinjector at SINBAD-ARES. Instruments 5 (2021).
999 C 5 |a 10.18429/JACoW-LINAC2022-THPOJO01
|9 -- missing cx lookup --
|2 Crossref
|u Burkart, F. et al. The ARES Linac at DESY. In Proceedings of the 31st International Linear Accelerator Conference (LINAC’22), no. 31 in International Linear Accelerator Conference, 691–694, https://doi.org/10.18429/JACoW-LINAC2022-THPOJO01 (JACoW Publishing, Geneva, Switzerland, 2022).
999 C 5 |a 10.7551/mitpress/3206.001.0001
|9 -- missing cx lookup --
|2 Crossref
|u Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine Learning (The MIT Press, 2005).
999 C 5 |a 10.1093/comjnl/7.4.308
|9 -- missing cx lookup --
|2 Crossref
|u Nelder, J. A. & Mead, R. A simplex method for function minimization. Comput. J. 7 (1965).
999 C 5 |a 10.1103/PhysRevSTAB.16.102803
|1 A Scheinker
|9 -- missing cx lookup --
|2 Crossref
|u Scheinker, A., Pang, X. & Rybarcyk, L. Model-independent particle accelerator tuning. Phys. Rev. ST Accel. Beams 16, 102803. https://doi.org/10.1103/PhysRevSTAB.16.102803 (2013).
|t Phys. Rev. ST Accel. Beams
|v 16
|y 2013
999 C 5 |2 Crossref
|u Hwang, K. et al. Prior-mean-assisted bayesian optimization application on frib front-end tunning (2022). arXiv:2211.06400.
999 C 5 |2 Crossref
|u Boltz, T. et al. More sample-efficient tuning of particle accelerators with bayesian optimization and prior mean models (2024). arXiv:2403.03225.
999 C 5 |a 10.1103/PhysRevAccelBeams.27.054601
|9 -- missing cx lookup --
|2 Crossref
|u Kaiser, J., Xu, C., Eichler, A. & Santamaria Garcia, A. Bridging the gap between machine learning and particle accelerator physics with high-speed, differentiable simulations. Phys. Rev. Acceler. Beams (2024).
999 C 5 |2 Crossref
|u Dulac-Arnold, G., Mankowitz, D. & Hester, T. Challenges of real-world reinforcement learning. In Proceedings of the 36th International Conference on Machine Learning (2019).
999 C 5 |a 10.1109/IROS.2017.8202133
|9 -- missing cx lookup --
|2 Crossref
|u Tobin, J. et al. Domain randomization for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 23–30. https://doi.org/10.1109/IROS.2017.8202133 (2017).
999 C 5 |2 Crossref
|u OpenAI et al. Solving Rubik’s cube with a robot hand (2019). Preprint available at arXiv:1910.07113.
999 C 5 |a 10.1103/PhysRevLett.128.204801
|1 R Roussel
|9 -- missing cx lookup --
|2 Crossref
|u Roussel, R. et al. Differentiable preisach modeling for characterization and optimization of particle accelerator systems with hysteresis. Phys. Rev. Lett. 128, 204801. https://doi.org/10.1103/PhysRevLett.128.204801 (2022).
|t Phys. Rev. Lett.
|v 128
|y 2022
999 C 5 |a 10.1038/s41467-021-25757-3
|9 -- missing cx lookup --
|1 R Roussel
|p 5612 -
|2 Crossref
|u Roussel, R. et al. Turn-key constrained parameter space exploration for particle accelerators using bayesian active learning. Nat. Commun. 12, 5612 (2021).
|t Nat. Commun.
|v 12
|y 2021
999 C 5 |a 10.18429/JACoW-IPAC2023-THPL028
|9 -- missing cx lookup --
|2 Crossref
|u Xu, C. et al. Bayesian optimization for SASE tuning at the European XFEL. In Proc. IPAC’23, no. 14 in IPAC’23 - 14th International Particle Accelerator Conference, 4483–4486, https://doi.org/10.18429/JACoW-IPAC2023-THPL028 (JACoW Publishing, Geneva, Switzerland, 2023).
999 C 5 |a 10.1103/PhysRevAccelBeams.25.062802
|1 J Kirschner
|9 -- missing cx lookup --
|2 Crossref
|u Kirschner, J. et al. Tuning particle accelerators with safety constraints using bayesian optimization. Phys. Rev. Accel. Beams 25, 062802. https://doi.org/10.1103/PhysRevAccelBeams.25.062802 (2022).
|t Phys. Rev. Accel. Beams
|v 25
|y 2022
999 C 5 |a 10.18429/JACoW-IPAC-2023-THPL029
|9 -- missing cx lookup --
|2 Crossref
|u Xu, C. et al. Beam trajectory control with lattice-agnostic reinforcement learning. In Proc. IPAC’23, https://doi.org/10.18429/JACoW-IPAC-2023-THPL029 (2023).
999 C 5 |a 10.18429/JACoW-IPAC2023-THPL038
|9 -- missing cx lookup --
|2 Crossref
|u Hirlaender, S. et al. Ultra fast reinforcement learning demonstrated at cern awake. In Proc. IPAC’23, no. 14 in IPAC’23 - 14th International Particle Accelerator Conference, 4510–4513, https://doi.org/10.18429/JACoW-IPAC2023-THPL038 (JACoW Publishing, Geneva, Switzerland, 2023).
999 C 5 |2 Crossref
|u Krause, A. & Ong, C. Contextual Gaussian process bandit optimization. In Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F. & Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 24 (Curran Associates, Inc., 2011).
999 C 5 |2 Crossref
|u Nyikosa, F. M., Osborne, M. A. & Roberts, S. J. Bayesian optimization for dynamic problems (2018). Preprint available at arXiv:1803.03432.
999 C 5 |a 10.18429/jacow-ipac2023-thpl007
|9 -- missing cx lookup --
|2 Crossref
|u Kuklev, N., Sun, Y., Shang, H., Borland, M. & Fystro, G. I. Robust adaptive bayesian optimization. In Proc. IPAC’23, no. 14 in IPAC’23 - 14th International Particle Accelerator Conference, 4377–4380, https://doi.org/10.18429/jacow-ipac2023-thpl007 (JACoW Publishing, Geneva, Switzerland, 2023).
999 C 5 |2 Crossref
|u Stein, O., Kaiser, J. & Eichler, A. Accelerating linear beam dynamics simulations for machine learning applications. In Proceedings of the 13th International Particle Accelerator Conference (2022).
999 C 5 |2 Crossref
|u Kaiser, J. & Xu, C. Cheetah (2023).
999 C 5 |2 Crossref
|u Brockman, G. et al. OpenAI Gym (2016).
999 C 5 |a 10.5281/zenodo.8127026
|1 M Towers
|9 -- missing cx lookup --
|2 Crossref
|u Towers, M. et al. Gymnasiumhttps://doi.org/10.5281/zenodo.8127026 (2023).
|t Gymnasium
|y 2023
999 C 5 |2 Crossref
|u Fujimoto, S., van Hoof, H. & Meger, D. Addressing function approximation error in actor-critic methods (2018). Preprint available at arXiv:1802.09477v3.
999 C 5 |2 Crossref
|u Raffin, A. et al. Stable Baselines3 (2019).
999 C 5 |2 Crossref
|u Balandat, M. et al. BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. In Advances in Neural Information Processing Systems 33 (2020).
999 C 5 |a 10.1007/978-1-4615-7892-5
|9 -- missing cx lookup --
|2 Crossref
|u Matérn, B. Spatial Variation, vol. 36 (Springer New York, 1986), 2 edn.
999 C 5 |a 10.1023/A:1008306431147
|9 -- missing cx lookup --
|1 DR Jones
|p 455 -
|2 Crossref
|u Jones, D. R., Schonlau, M. & Welch, W. J. Efficient global optimization of expensive black-box functions. J. Global Optim. 13, 455–492. https://doi.org/10.1023/A:1008306431147 (1998).
|t J. Global Optim.
|v 13
|y 1998
999 C 5 |a 10.18429/jacow-ipac2023-thpl164
|9 -- missing cx lookup --
|2 Crossref
|u Roussel, R., Edelen, A., Bartnik, A. & Mayes, C. Xopt: A simplified framework for optimization of accelerator problems using advanced algorithms. In Proc. IPAC’23, no. 14 in IPAC’23 - 14th International Particle Accelerator Conference, 4796–4799, https://doi.org/10.18429/jacow-ipac2023-thpl164 (JACoW Publishing, Geneva, Switzerland, 2023).
999 C 5 |2 Crossref
|u Fundamental Algorithms for Scientific Computing in Python. Virtanen, P. et al. SciPy 1.0. Nat. Methods17, 261–272 (2020).
999 C 5 |a 10.1109/TCST.2021.3136133
|9 -- missing cx lookup --
|1 A Scheinker
|p 2261 -
|2 Crossref
|u Scheinker, A., Huang, E.-C. & Taylor, C. Extremum seeking-based control system for particle accelerator beam loss minimization. IEEE Trans. Control Syst. Technol. 30, 2261–2268. https://doi.org/10.1109/TCST.2021.3136133 (2022).
|t IEEE Trans. Control Syst. Technol.
|v 30
|y 2022


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21